Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcriOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nfcri 2906 as of 26-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2142, ax-11 2158. (Revised by Gino Giotto, 23-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nfcrii.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcriOLDOLD | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2834 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | 1 | nfbidv 1923 | . 2 ⊢ (𝑧 = 𝑦 → (Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐴)) |
3 | nfcrii.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | df-nfc 2901 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | |
5 | 4 | biimpi 219 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) |
6 | df-nf 1786 | . . . . . 6 ⊢ (Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ (∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) | |
7 | 6 | albii 1821 | . . . . 5 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑧(∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) |
8 | sp 2180 | . . . . 5 ⊢ (∀𝑧(∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) → (∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) | |
9 | 7, 8 | sylbi 220 | . . . 4 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 → (∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) |
10 | 3, 5, 9 | mp2b 10 | . . 3 ⊢ (∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
11 | 10 | nfi 1790 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
12 | 2, 11 | chvarvv 2005 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 ∃wex 1781 Ⅎwnf 1785 ∈ wcel 2111 Ⅎwnfc 2899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-nf 1786 df-clel 2830 df-nfc 2901 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |