Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcriOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nfcri 2893 as of 3-Jun-2024. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2139, ax-11 2156. (Revised by Gino Giotto, 23-May-2024.) Avoid ax-12 2173. (Revised by SN, 26-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nfcrii.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcriOLD | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2821 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | 1 | nfbidv 1926 | . 2 ⊢ (𝑧 = 𝑦 → (Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐴)) |
3 | nfcrii.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | df-nfc 2888 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | |
5 | 4 | biimpi 215 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) |
6 | df-nf 1788 | . . . . . 6 ⊢ (Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ (∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) | |
7 | 6 | albii 1823 | . . . . 5 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑧(∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) |
8 | eleq1w 2821 | . . . . . . . 8 ⊢ (𝑧 = 𝑤 → (𝑧 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
9 | 8 | exbidv 1925 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (∃𝑥 𝑧 ∈ 𝐴 ↔ ∃𝑥 𝑤 ∈ 𝐴)) |
10 | 8 | albidv 1924 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (∀𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑥 𝑤 ∈ 𝐴)) |
11 | 9, 10 | imbi12d 344 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) ↔ (∃𝑥 𝑤 ∈ 𝐴 → ∀𝑥 𝑤 ∈ 𝐴))) |
12 | 11 | spw 2038 | . . . . 5 ⊢ (∀𝑧(∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) → (∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) |
13 | 7, 12 | sylbi 216 | . . . 4 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 → (∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴)) |
14 | 3, 5, 13 | mp2b 10 | . . 3 ⊢ (∃𝑥 𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
15 | 14 | nfi 1792 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
16 | 2, 15 | chvarvv 2003 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |