| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
| 3 | 2 | albidv 1920 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: dff13 7229 xpord2indlem 8126 xpord3inddlem 8133 qliftfun 8775 seqf1o 14008 fi1uzind 14472 brfi1indALT 14475 trclfvcotr 14975 dchrelbas3 27149 isch2 31152 isacycgr1 35133 mclsssvlem 35549 mclsval 35550 mclsax 35556 mclsind 35557 trer 36304 mbfresfi 37660 isass 37840 relcnveq2 38311 elrelscnveq2 38484 elsymrels3 38545 elsymrels5 38547 eltrrels3 38571 eleqvrels3 38584 lpolsetN 41476 islpolN 41477 ismrc 42689 2sbc6g 44404 fun2dmnopgexmpl 47285 joindm2 48956 meetdm2 48958 |
| Copyright terms: Public domain | W3C validator |