Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | albidv 1924 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
3 | 2 | albidv 1924 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: dff13 7109 qliftfun 8549 seqf1o 13692 fi1uzind 14139 brfi1indALT 14142 trclfvcotr 14648 dchrelbas3 26291 isch2 29486 isacycgr1 33008 mclsssvlem 33424 mclsval 33425 mclsax 33431 mclsind 33432 xpord2ind 33721 xpord3ind 33727 trer 34432 mbfresfi 35750 isass 35931 relcnveq2 36385 elrelscnveq2 36538 elsymrels3 36595 elsymrels5 36597 eltrrels3 36621 eleqvrels3 36633 lpolsetN 39423 islpolN 39424 ismrc 40439 2sbc6g 41922 fun2dmnopgexmpl 44663 joindm2 46150 meetdm2 46152 |
Copyright terms: Public domain | W3C validator |