MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2albidv Structured version   Visualization version   GIF version

Theorem 2albidv 1921
Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.)
Hypothesis
Ref Expression
2albidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
2albidv (𝜑 → (∀𝑥𝑦𝜓 ↔ ∀𝑥𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem 2albidv
StepHypRef Expression
1 2albidv.1 . . 3 (𝜑 → (𝜓𝜒))
21albidv 1918 . 2 (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒))
32albidv 1918 1 (𝜑 → (∀𝑥𝑦𝜓 ↔ ∀𝑥𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  dff13  7275  xpord2indlem  8171  xpord3inddlem  8178  qliftfun  8841  seqf1o  14081  fi1uzind  14543  brfi1indALT  14546  trclfvcotr  15045  dchrelbas3  27297  isch2  31252  isacycgr1  35131  mclsssvlem  35547  mclsval  35548  mclsax  35554  mclsind  35555  trer  36299  mbfresfi  37653  isass  37833  relcnveq2  38305  elrelscnveq2  38475  elsymrels3  38536  elsymrels5  38538  eltrrels3  38562  eleqvrels3  38575  lpolsetN  41465  islpolN  41466  ismrc  42689  2sbc6g  44411  fun2dmnopgexmpl  47234  joindm2  48765  meetdm2  48767
  Copyright terms: Public domain W3C validator