MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2albidv Structured version   Visualization version   GIF version

Theorem 2albidv 1926
Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.)
Hypothesis
Ref Expression
2albidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
2albidv (𝜑 → (∀𝑥𝑦𝜓 ↔ ∀𝑥𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem 2albidv
StepHypRef Expression
1 2albidv.1 . . 3 (𝜑 → (𝜓𝜒))
21albidv 1923 . 2 (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒))
32albidv 1923 1 (𝜑 → (∀𝑥𝑦𝜓 ↔ ∀𝑥𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  dff13  7128  qliftfun  8591  seqf1o  13764  fi1uzind  14211  brfi1indALT  14214  trclfvcotr  14720  dchrelbas3  26386  isch2  29585  isacycgr1  33108  mclsssvlem  33524  mclsval  33525  mclsax  33531  mclsind  33532  xpord2ind  33794  xpord3ind  33800  trer  34505  mbfresfi  35823  isass  36004  relcnveq2  36458  elrelscnveq2  36611  elsymrels3  36668  elsymrels5  36670  eltrrels3  36694  eleqvrels3  36706  lpolsetN  39496  islpolN  39497  ismrc  40523  2sbc6g  42033  fun2dmnopgexmpl  44776  joindm2  46262  meetdm2  46264
  Copyright terms: Public domain W3C validator