| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
| 3 | 2 | albidv 1920 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: dff13 7232 xpord2indlem 8129 xpord3inddlem 8136 qliftfun 8778 seqf1o 14015 fi1uzind 14479 brfi1indALT 14482 trclfvcotr 14982 dchrelbas3 27156 isch2 31159 isacycgr1 35140 mclsssvlem 35556 mclsval 35557 mclsax 35563 mclsind 35564 trer 36311 mbfresfi 37667 isass 37847 relcnveq2 38318 elrelscnveq2 38491 elsymrels3 38552 elsymrels5 38554 eltrrels3 38578 eleqvrels3 38591 lpolsetN 41483 islpolN 41484 ismrc 42696 2sbc6g 44411 fun2dmnopgexmpl 47289 joindm2 48960 meetdm2 48962 |
| Copyright terms: Public domain | W3C validator |