| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
| 3 | 2 | albidv 1920 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: dff13 7191 xpord2indlem 8080 xpord3inddlem 8087 qliftfun 8729 seqf1o 13950 fi1uzind 14414 brfi1indALT 14417 trclfvcotr 14916 dchrelbas3 27147 isch2 31171 isacycgr1 35139 mclsssvlem 35555 mclsval 35556 mclsax 35562 mclsind 35563 trer 36310 mbfresfi 37666 isass 37846 relcnveq2 38317 elrelscnveq2 38490 elsymrels3 38551 elsymrels5 38553 eltrrels3 38577 eleqvrels3 38590 lpolsetN 41481 islpolN 41482 ismrc 42694 2sbc6g 44408 fun2dmnopgexmpl 47288 joindm2 48972 meetdm2 48974 |
| Copyright terms: Public domain | W3C validator |