| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
| 3 | 2 | albidv 1920 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: dff13 7211 xpord2indlem 8103 xpord3inddlem 8110 qliftfun 8752 seqf1o 13984 fi1uzind 14448 brfi1indALT 14451 trclfvcotr 14951 dchrelbas3 27182 isch2 31202 isacycgr1 35126 mclsssvlem 35542 mclsval 35543 mclsax 35549 mclsind 35550 trer 36297 mbfresfi 37653 isass 37833 relcnveq2 38304 elrelscnveq2 38477 elsymrels3 38538 elsymrels5 38540 eltrrels3 38564 eleqvrels3 38577 lpolsetN 41469 islpolN 41470 ismrc 42682 2sbc6g 44397 fun2dmnopgexmpl 47278 joindm2 48949 meetdm2 48951 |
| Copyright terms: Public domain | W3C validator |