MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2albidv Structured version   Visualization version   GIF version

Theorem 2albidv 1923
Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.)
Hypothesis
Ref Expression
2albidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
2albidv (𝜑 → (∀𝑥𝑦𝜓 ↔ ∀𝑥𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem 2albidv
StepHypRef Expression
1 2albidv.1 . . 3 (𝜑 → (𝜓𝜒))
21albidv 1920 . 2 (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒))
32albidv 1920 1 (𝜑 → (∀𝑥𝑦𝜓 ↔ ∀𝑥𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  dff13  7232  xpord2indlem  8129  xpord3inddlem  8136  qliftfun  8778  seqf1o  14015  fi1uzind  14479  brfi1indALT  14482  trclfvcotr  14982  dchrelbas3  27156  isch2  31159  isacycgr1  35140  mclsssvlem  35556  mclsval  35557  mclsax  35563  mclsind  35564  trer  36311  mbfresfi  37667  isass  37847  relcnveq2  38318  elrelscnveq2  38491  elsymrels3  38552  elsymrels5  38554  eltrrels3  38578  eleqvrels3  38591  lpolsetN  41483  islpolN  41484  ismrc  42696  2sbc6g  44411  fun2dmnopgexmpl  47289  joindm2  48960  meetdm2  48962
  Copyright terms: Public domain W3C validator