| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
| 3 | 2 | albidv 1920 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: dff13 7247 xpord2indlem 8146 xpord3inddlem 8153 qliftfun 8816 seqf1o 14061 fi1uzind 14525 brfi1indALT 14528 trclfvcotr 15028 dchrelbas3 27201 isch2 31204 isacycgr1 35168 mclsssvlem 35584 mclsval 35585 mclsax 35591 mclsind 35592 trer 36334 mbfresfi 37690 isass 37870 relcnveq2 38341 elrelscnveq2 38511 elsymrels3 38572 elsymrels5 38574 eltrrels3 38598 eleqvrels3 38611 lpolsetN 41501 islpolN 41502 ismrc 42724 2sbc6g 44439 fun2dmnopgexmpl 47313 joindm2 48942 meetdm2 48944 |
| Copyright terms: Public domain | W3C validator |