| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | albidv 1921 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
| 3 | 2 | albidv 1921 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: dff13 7188 xpord2indlem 8077 xpord3inddlem 8084 qliftfun 8726 seqf1o 13950 fi1uzind 14414 brfi1indALT 14417 trclfvcotr 14916 dchrelbas3 27176 isch2 31203 isacycgr1 35190 mclsssvlem 35606 mclsval 35607 mclsax 35613 mclsind 35614 trer 36360 mbfresfi 37705 isass 37885 relcnveq2 38360 elrelscnveq2 38640 elsymrels3 38649 elsymrels5 38651 eltrrels3 38675 eleqvrels3 38688 lpolsetN 41580 islpolN 41581 ismrc 42793 2sbc6g 44507 fun2dmnopgexmpl 47383 joindm2 49067 meetdm2 49069 |
| Copyright terms: Public domain | W3C validator |