![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | albidv 1918 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
3 | 2 | albidv 1918 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: dff13 7275 xpord2indlem 8171 xpord3inddlem 8178 qliftfun 8841 seqf1o 14081 fi1uzind 14543 brfi1indALT 14546 trclfvcotr 15045 dchrelbas3 27297 isch2 31252 isacycgr1 35131 mclsssvlem 35547 mclsval 35548 mclsax 35554 mclsind 35555 trer 36299 mbfresfi 37653 isass 37833 relcnveq2 38305 elrelscnveq2 38475 elsymrels3 38536 elsymrels5 38538 eltrrels3 38562 eleqvrels3 38575 lpolsetN 41465 islpolN 41466 ismrc 42689 2sbc6g 44411 fun2dmnopgexmpl 47234 joindm2 48765 meetdm2 48767 |
Copyright terms: Public domain | W3C validator |