![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | albidv 1919 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
3 | 2 | albidv 1919 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: dff13 7292 xpord2indlem 8188 xpord3inddlem 8195 qliftfun 8860 seqf1o 14094 fi1uzind 14556 brfi1indALT 14559 trclfvcotr 15058 dchrelbas3 27300 isch2 31255 isacycgr1 35114 mclsssvlem 35530 mclsval 35531 mclsax 35537 mclsind 35538 trer 36282 mbfresfi 37626 isass 37806 relcnveq2 38279 elrelscnveq2 38449 elsymrels3 38510 elsymrels5 38512 eltrrels3 38536 eleqvrels3 38549 lpolsetN 41439 islpolN 41440 ismrc 42657 2sbc6g 44384 fun2dmnopgexmpl 47199 joindm2 48648 meetdm2 48650 |
Copyright terms: Public domain | W3C validator |