Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2albidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | albidv 1923 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
3 | 2 | albidv 1923 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: dff13 7128 qliftfun 8591 seqf1o 13764 fi1uzind 14211 brfi1indALT 14214 trclfvcotr 14720 dchrelbas3 26386 isch2 29585 isacycgr1 33108 mclsssvlem 33524 mclsval 33525 mclsax 33531 mclsind 33532 xpord2ind 33794 xpord3ind 33800 trer 34505 mbfresfi 35823 isass 36004 relcnveq2 36458 elrelscnveq2 36611 elsymrels3 36668 elsymrels5 36670 eltrrels3 36694 eleqvrels3 36706 lpolsetN 39496 islpolN 39497 ismrc 40523 2sbc6g 42033 fun2dmnopgexmpl 44776 joindm2 46262 meetdm2 46264 |
Copyright terms: Public domain | W3C validator |