| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmod | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the at-most-one quantifier. Deduction version of nfmo 2557. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfmodv 2554 when possible. (Contributed by Mario Carneiro, 14-Nov-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfmod.1 | ⊢ Ⅎ𝑦𝜑 |
| nfmod.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfmod | ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmod.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfmod.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
| 4 | 1, 3 | nfmod2 2553 | 1 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 Ⅎwnf 1784 ∃*wmo 2533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 |
| This theorem is referenced by: nfmo 2557 |
| Copyright terms: Public domain | W3C validator |