Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmod | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the at-most-one quantifier. Deduction version of nfmo 2562. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfmodv 2559 when possible. (Contributed by Mario Carneiro, 14-Nov-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfmod.1 | ⊢ Ⅎ𝑦𝜑 |
nfmod.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfmod | ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmod.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfmod.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
3 | 2 | adantr 481 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
4 | 1, 3 | nfmod2 2558 | 1 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 Ⅎwnf 1786 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2540 |
This theorem is referenced by: nfmo 2562 wl-mo3t 35731 |
Copyright terms: Public domain | W3C validator |