|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfmod | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the at-most-one quantifier. Deduction version of nfmo 2562. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker nfmodv 2559 when possible. (Contributed by Mario Carneiro, 14-Nov-2016.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nfmod.1 | ⊢ Ⅎ𝑦𝜑 | 
| nfmod.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| nfmod | ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfmod.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfmod.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | 
| 4 | 1, 3 | nfmod2 2558 | 1 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 Ⅎwnf 1783 ∃*wmo 2538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 | 
| This theorem is referenced by: nfmo 2562 | 
| Copyright terms: Public domain | W3C validator |