MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmod Structured version   Visualization version   GIF version

Theorem nfmod 2561
Description: Bound-variable hypothesis builder for the at-most-one quantifier. Deduction version of nfmo 2562. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfmodv 2559 when possible. (Contributed by Mario Carneiro, 14-Nov-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfmod.1 𝑦𝜑
nfmod.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfmod (𝜑 → Ⅎ𝑥∃*𝑦𝜓)

Proof of Theorem nfmod
StepHypRef Expression
1 nfmod.1 . 2 𝑦𝜑
2 nfmod.2 . . 3 (𝜑 → Ⅎ𝑥𝜓)
32adantr 481 . 2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
41, 3nfmod2 2558 1 (𝜑 → Ⅎ𝑥∃*𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wnf 1786  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540
This theorem is referenced by:  nfmo  2562  wl-mo3t  35731
  Copyright terms: Public domain W3C validator