| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmo | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the at-most-one quantifier. Note that 𝑥 and 𝑦 need not be disjoint. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker nfmov 2554 when possible. (Contributed by NM, 9-Mar-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfmo.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfmo | ⊢ Ⅎ𝑥∃*𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfmo.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | 1, 3 | nfmod 2555 | . 2 ⊢ (⊤ → Ⅎ𝑥∃*𝑦𝜑) |
| 5 | 4 | mptru 1548 | 1 ⊢ Ⅎ𝑥∃*𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 ∃*wmo 2532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2143 ax-11 2159 ax-12 2179 ax-13 2371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2534 |
| This theorem is referenced by: moexex 2632 2moex 2634 2euex 2635 |
| Copyright terms: Public domain | W3C validator |