MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmo Structured version   Visualization version   GIF version

Theorem nfmo 2560
Description: Bound-variable hypothesis builder for the at-most-one quantifier. Note that 𝑥 and 𝑦 need not be disjoint. Usage of this theorem is discouraged because it depends on ax-13 2375. Use the weaker nfmov 2558 when possible. (Contributed by NM, 9-Mar-1995.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfmo.1 𝑥𝜑
Assertion
Ref Expression
nfmo 𝑥∃*𝑦𝜑

Proof of Theorem nfmo
StepHypRef Expression
1 nftru 1801 . . 3 𝑦
2 nfmo.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmod 2559 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54mptru 1544 1 𝑥∃*𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1538  wnf 1780  ∃*wmo 2536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-11 2155  ax-12 2175  ax-13 2375
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-mo 2538
This theorem is referenced by:  moexex  2636  2moex  2638  2euex  2639
  Copyright terms: Public domain W3C validator