Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmodv | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmod 2561 for a version without disjoint variable conditions but requiring ax-13 2372. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by BJ, 28-Jan-2023.) |
Ref | Expression |
---|---|
nfmodv.1 | ⊢ Ⅎ𝑦𝜑 |
nfmodv.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfmodv | ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2540 | . 2 ⊢ (∃*𝑦𝜓 ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) | |
2 | nfv 1918 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
3 | nfmodv.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfmodv.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | nfvd 1919 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) | |
6 | 4, 5 | nfimd 1898 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝑦 = 𝑧)) |
7 | 3, 6 | nfald 2326 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 → 𝑦 = 𝑧)) |
8 | 2, 7 | nfexd 2327 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
9 | 1, 8 | nfxfrd 1857 | 1 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 df-mo 2540 |
This theorem is referenced by: nfmov 2560 nfeudw 2591 nfrmow 3301 nfdisjw 5047 |
Copyright terms: Public domain | W3C validator |