| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmodv | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmod 2561 for a version without disjoint variable conditions but requiring ax-13 2377. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by BJ, 28-Jan-2023.) |
| Ref | Expression |
|---|---|
| nfmodv.1 | ⊢ Ⅎ𝑦𝜑 |
| nfmodv.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfmodv | ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 2540 | . 2 ⊢ (∃*𝑦𝜓 ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfmodv.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfmodv.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | nfvd 1915 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) | |
| 6 | 4, 5 | nfimd 1894 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝑦 = 𝑧)) |
| 7 | 3, 6 | nfald 2329 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| 8 | 2, 7 | nfexd 2330 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| 9 | 1, 8 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 ∃*wmo 2538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 df-mo 2540 |
| This theorem is referenced by: nfmov 2560 nfeudw 2591 nfrmowOLD 3411 nfdisjw 5103 wl-mo3t 37599 |
| Copyright terms: Public domain | W3C validator |