MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmov Structured version   Visualization version   GIF version

Theorem nfmov 2555
Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmo 2557 for a version without disjoint variable conditions but requiring ax-13 2372. (Contributed by NM, 9-Mar-1995.) (Revised by Wolf Lammen, 2-Oct-2023.)
Hypothesis
Ref Expression
nfmov.1 𝑥𝜑
Assertion
Ref Expression
nfmov 𝑥∃*𝑦𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfmov
StepHypRef Expression
1 nftru 1805 . . 3 𝑦
2 nfmov.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmodv 2554 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54mptru 1548 1 𝑥∃*𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  wnf 1784  ∃*wmo 2533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-mo 2535
This theorem is referenced by:  mo3  2559  2moexv  2622  moexexvw  2623  2moswapv  2624  2euexv  2626  2mo  2643  nfrmow  3375  reusv1  5335  reusv2lem1  5336  mosubopt  5450  dffun6f  6496
  Copyright terms: Public domain W3C validator