MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmov Structured version   Visualization version   GIF version

Theorem nfmov 2557
Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmo 2559 for a version without disjoint variable conditions but requiring ax-13 2374. (Contributed by NM, 9-Mar-1995.) (Revised by Wolf Lammen, 2-Oct-2023.)
Hypothesis
Ref Expression
nfmov.1 𝑥𝜑
Assertion
Ref Expression
nfmov 𝑥∃*𝑦𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfmov
StepHypRef Expression
1 nftru 1800 . . 3 𝑦
2 nfmov.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmodv 2556 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54mptru 1543 1 𝑥∃*𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1537  wnf 1779  ∃*wmo 2535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-10 2138  ax-11 2154  ax-12 2174
This theorem depends on definitions:  df-bi 207  df-or 848  df-tru 1539  df-ex 1776  df-nf 1780  df-mo 2537
This theorem is referenced by:  mo3  2561  2moexv  2624  moexexvw  2625  2moswapv  2626  2euexv  2628  2mo  2645  nfrmow  3410  reusv1  5402  reusv2lem1  5403  mosubopt  5519  dffun6f  6580
  Copyright terms: Public domain W3C validator