| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmov | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmo 2557 for a version without disjoint variable conditions but requiring ax-13 2372. (Contributed by NM, 9-Mar-1995.) (Revised by Wolf Lammen, 2-Oct-2023.) |
| Ref | Expression |
|---|---|
| nfmov.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfmov | ⊢ Ⅎ𝑥∃*𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfmov.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | 1, 3 | nfmodv 2554 | . 2 ⊢ (⊤ → Ⅎ𝑥∃*𝑦𝜑) |
| 5 | 4 | mptru 1548 | 1 ⊢ Ⅎ𝑥∃*𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 ∃*wmo 2533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 |
| This theorem is referenced by: mo3 2559 2moexv 2622 moexexvw 2623 2moswapv 2624 2euexv 2626 2mo 2643 nfrmow 3375 reusv1 5335 reusv2lem1 5336 mosubopt 5450 dffun6f 6496 |
| Copyright terms: Public domain | W3C validator |