MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmov Structured version   Visualization version   GIF version

Theorem nfmov 2560
Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmo 2562 for a version without disjoint variable conditions but requiring ax-13 2372. (Contributed by NM, 9-Mar-1995.) (Revised by Wolf Lammen, 2-Oct-2023.)
Hypothesis
Ref Expression
nfmov.1 𝑥𝜑
Assertion
Ref Expression
nfmov 𝑥∃*𝑦𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfmov
StepHypRef Expression
1 nftru 1807 . . 3 𝑦
2 nfmov.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmodv 2559 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54mptru 1546 1 𝑥∃*𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wnf 1786  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540
This theorem is referenced by:  mo3  2564  2moexv  2629  moexexvw  2630  2moswapv  2631  2euexv  2633  2mo  2650  nfrmow  3304  reusv1  5320  reusv2lem1  5321  mosubopt  5424  dffun6f  6448
  Copyright terms: Public domain W3C validator