![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmov | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmo 2559 for a version without disjoint variable conditions but requiring ax-13 2374. (Contributed by NM, 9-Mar-1995.) (Revised by Wolf Lammen, 2-Oct-2023.) |
Ref | Expression |
---|---|
nfmov.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfmov | ⊢ Ⅎ𝑥∃*𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1800 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfmov.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfmodv 2556 | . 2 ⊢ (⊤ → Ⅎ𝑥∃*𝑦𝜑) |
5 | 4 | mptru 1543 | 1 ⊢ Ⅎ𝑥∃*𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1537 Ⅎwnf 1779 ∃*wmo 2535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-10 2138 ax-11 2154 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-mo 2537 |
This theorem is referenced by: mo3 2561 2moexv 2624 moexexvw 2625 2moswapv 2626 2euexv 2628 2mo 2645 nfrmow 3410 reusv1 5402 reusv2lem1 5403 mosubopt 5519 dffun6f 6580 |
Copyright terms: Public domain | W3C validator |