Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmov | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmo 2581 for a version without disjoint variable conditions but requiring ax-13 2380. (Contributed by NM, 9-Mar-1995.) (Revised by Wolf Lammen, 2-Oct-2023.) |
Ref | Expression |
---|---|
nfmov.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfmov | ⊢ Ⅎ𝑥∃*𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfmov.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfmodv 2578 | . 2 ⊢ (⊤ → Ⅎ𝑥∃*𝑦𝜑) |
5 | 4 | mptru 1546 | 1 ⊢ Ⅎ𝑥∃*𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1786 ∃*wmo 2556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-10 2143 ax-11 2159 ax-12 2176 |
This theorem depends on definitions: df-bi 210 df-or 846 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2558 |
This theorem is referenced by: mo3 2583 2moexv 2649 moexexvw 2650 2moswapv 2651 2euexv 2653 2mo 2670 reusv1 5267 reusv2lem1 5268 mosubopt 5370 dffun6f 6350 |
Copyright terms: Public domain | W3C validator |