MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmod2 Structured version   Visualization version   GIF version

Theorem nfmod2 2548
Description: Bound-variable hypothesis builder for the at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 2367. See nfmodv 2549 for a version replacing the distinctor with a disjoint variable condition, not requiring ax-13 2367. (Contributed by Mario Carneiro, 14-Nov-2016.) Avoid df-eu 2559. (Revised by BJ, 14-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfmod2.1 𝑦𝜑
nfmod2.2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfmod2 (𝜑 → Ⅎ𝑥∃*𝑦𝜓)

Proof of Theorem nfmod2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2530 . 2 (∃*𝑦𝜓 ↔ ∃𝑧𝑦(𝜓𝑦 = 𝑧))
2 nfv 1910 . . 3 𝑧𝜑
3 nfmod2.1 . . . 4 𝑦𝜑
4 nfmod2.2 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
5 nfeqf1 2374 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧)
65adantl 481 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 = 𝑧)
74, 6nfimd 1890 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝜓𝑦 = 𝑧))
83, 7nfald2 2440 . . 3 (𝜑 → Ⅎ𝑥𝑦(𝜓𝑦 = 𝑧))
92, 8nfexd 2318 . 2 (𝜑 → Ⅎ𝑥𝑧𝑦(𝜓𝑦 = 𝑧))
101, 9nfxfrd 1849 1 (𝜑 → Ⅎ𝑥∃*𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1532  wex 1774  wnf 1778  ∃*wmo 2528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-11 2147  ax-12 2167  ax-13 2367
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-mo 2530
This theorem is referenced by:  nfmod  2551  nfeud2  2580  nfrmod  3425  nfrmo  3427  nfdisj  5126
  Copyright terms: Public domain W3C validator