Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmod2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfmodv 2559 for a version replacing the distinctor with a disjoint variable condition, not requiring ax-13 2372. (Contributed by Mario Carneiro, 14-Nov-2016.) Avoid df-eu 2569. (Revised by BJ, 14-Oct-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfmod2.1 | ⊢ Ⅎ𝑦𝜑 |
nfmod2.2 | ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfmod2 | ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2540 | . 2 ⊢ (∃*𝑦𝜓 ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) | |
2 | nfv 1918 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
3 | nfmod2.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfmod2.2 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | |
5 | nfeqf1 2379 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 = 𝑧) |
7 | 4, 6 | nfimd 1898 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝜓 → 𝑦 = 𝑧)) |
8 | 3, 7 | nfald2 2445 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 → 𝑦 = 𝑧)) |
9 | 2, 8 | nfexd 2327 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
10 | 1, 9 | nfxfrd 1857 | 1 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-mo 2540 |
This theorem is referenced by: nfmod 2561 nfeud2 2590 nfrmod 3299 nfrmo 3303 nfdisj 5048 |
Copyright terms: Public domain | W3C validator |