| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sb8et | Structured version Visualization version GIF version | ||
| Description: Substitution of variable in universal quantifier. Closed form of sb8e 2523. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| wl-sb8et | ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnbi 1855 | . . . . 5 ⊢ (Ⅎ𝑦𝜑 ↔ Ⅎ𝑦 ¬ 𝜑) | |
| 2 | 1 | albii 1819 | . . . 4 ⊢ (∀𝑥Ⅎ𝑦𝜑 ↔ ∀𝑥Ⅎ𝑦 ¬ 𝜑) |
| 3 | wl-sb8t 37575 | . . . 4 ⊢ (∀𝑥Ⅎ𝑦 ¬ 𝜑 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑)) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑)) |
| 5 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 6 | sbn 2281 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 7 | 6 | albii 1819 | . . . 4 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
| 8 | alnex 1781 | . . . 4 ⊢ (∀𝑦 ¬ [𝑦 / 𝑥]𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑) | |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑) |
| 10 | 4, 5, 9 | 3bitr3g 313 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑)) |
| 11 | 10 | con4bid 317 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: wl-sb8mot 37603 |
| Copyright terms: Public domain | W3C validator |