![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sb8et | Structured version Visualization version GIF version |
Description: Substitution of variable in universal quantifier. Closed form of sb8e 2502. (Contributed by Wolf Lammen, 27-Jul-2019.) |
Ref | Expression |
---|---|
wl-sb8et | ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-nfnbi 33908 | . . . . 5 ⊢ (Ⅎ𝑦𝜑 ↔ Ⅎ𝑦 ¬ 𝜑) | |
2 | 1 | albii 1863 | . . . 4 ⊢ (∀𝑥Ⅎ𝑦𝜑 ↔ ∀𝑥Ⅎ𝑦 ¬ 𝜑) |
3 | wl-sb8t 33928 | . . . 4 ⊢ (∀𝑥Ⅎ𝑦 ¬ 𝜑 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑)) | |
4 | 2, 3 | sylbi 209 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑)) |
5 | alnex 1825 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
6 | sbn 2467 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
7 | 6 | albii 1863 | . . . 4 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
8 | alnex 1825 | . . . 4 ⊢ (∀𝑦 ¬ [𝑦 / 𝑥]𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑) | |
9 | 7, 8 | bitri 267 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑) |
10 | 4, 5, 9 | 3bitr3g 305 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑)) |
11 | 10 | con4bid 309 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∀wal 1599 ∃wex 1823 Ⅎwnf 1827 [wsb 2011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ex 1824 df-nf 1828 df-sb 2012 |
This theorem is referenced by: wl-mo3t 33952 wl-sb8mot 33954 |
Copyright terms: Public domain | W3C validator |