Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8et Structured version   Visualization version   GIF version

Theorem wl-sb8et 35635
Description: Substitution of variable in universal quantifier. Closed form of sb8e 2522. (Contributed by Wolf Lammen, 27-Jul-2019.)
Assertion
Ref Expression
wl-sb8et (∀𝑥𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑))

Proof of Theorem wl-sb8et
StepHypRef Expression
1 nfnbi 1858 . . . . 5 (Ⅎ𝑦𝜑 ↔ Ⅎ𝑦 ¬ 𝜑)
21albii 1823 . . . 4 (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦 ¬ 𝜑)
3 wl-sb8t 35634 . . . 4 (∀𝑥𝑦 ¬ 𝜑 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑))
42, 3sylbi 216 . . 3 (∀𝑥𝑦𝜑 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑))
5 alnex 1785 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
6 sbn 2280 . . . . 5 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
76albii 1823 . . . 4 (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑)
8 alnex 1785 . . . 4 (∀𝑦 ¬ [𝑦 / 𝑥]𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑)
97, 8bitri 274 . . 3 (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑)
104, 5, 93bitr3g 312 . 2 (∀𝑥𝑦𝜑 → (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑))
1110con4bid 316 1 (∀𝑥𝑦𝜑 → (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wex 1783  wnf 1787  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  wl-mo3t  35658  wl-sb8mot  35660
  Copyright terms: Public domain W3C validator