Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnssi3 Structured version   Visualization version   GIF version

Theorem nnssi3 33324
Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Hypotheses
Ref Expression
nnssi3.1 ℕ ⊆ 𝐷
nnssi3.2 (𝐶 ∈ ℕ → 𝜑)
nnssi3.3 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ 𝜑) → 𝜓)
Assertion
Ref Expression
nnssi3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝜓)

Proof of Theorem nnssi3
StepHypRef Expression
1 nnssi3.1 . . . 4 ℕ ⊆ 𝐷
21sseli 3848 . . 3 (𝐴 ∈ ℕ → 𝐴𝐷)
31sseli 3848 . . 3 (𝐵 ∈ ℕ → 𝐵𝐷)
41sseli 3848 . . 3 (𝐶 ∈ ℕ → 𝐶𝐷)
52, 3, 43anim123i 1131 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴𝐷𝐵𝐷𝐶𝐷))
6 nnssi3.2 . . 3 (𝐶 ∈ ℕ → 𝜑)
763ad2ant3 1115 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝜑)
8 nnssi3.3 . 2 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ 𝜑) → 𝜓)
95, 7, 8syl2anc 576 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068  wcel 2050  wss 3823  cn 11433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2744
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2753  df-cleq 2765  df-clel 2840  df-in 3830  df-ss 3837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator