| Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnssi3 | Structured version Visualization version GIF version | ||
| Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
| Ref | Expression |
|---|---|
| nnssi3.1 | ⊢ ℕ ⊆ 𝐷 |
| nnssi3.2 | ⊢ (𝐶 ∈ ℕ → 𝜑) |
| nnssi3.3 | ⊢ (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| nnssi3 | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssi3.1 | . . . 4 ⊢ ℕ ⊆ 𝐷 | |
| 2 | 1 | sseli 3979 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ 𝐷) |
| 3 | 1 | sseli 3979 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ 𝐷) |
| 4 | 1 | sseli 3979 | . . 3 ⊢ (𝐶 ∈ ℕ → 𝐶 ∈ 𝐷) |
| 5 | 2, 3, 4 | 3anim123i 1152 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷)) |
| 6 | nnssi3.2 | . . 3 ⊢ (𝐶 ∈ ℕ → 𝜑) | |
| 7 | 6 | 3ad2ant3 1136 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝜑) |
| 8 | nnssi3.3 | . 2 ⊢ (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ∧ 𝜑) → 𝜓) | |
| 9 | 5, 7, 8 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ⊆ wss 3951 ℕcn 12266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1780 df-clel 2816 df-ss 3968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |