Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndivsub Structured version   Visualization version   GIF version

Theorem nndivsub 34646
Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Assertion
Ref Expression
nndivsub (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))

Proof of Theorem nndivsub
StepHypRef Expression
1 nnre 11980 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nnre 11980 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
3 nnre 11980 . . . . . . . . . 10 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
4 nngt0 12004 . . . . . . . . . 10 (𝐶 ∈ ℕ → 0 < 𝐶)
53, 4jca 512 . . . . . . . . 9 (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
6 ltdiv1 11839 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
71, 2, 5, 6syl3an 1159 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
8 nnsub 12017 . . . . . . . 8 (((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ) → ((𝐴 / 𝐶) < (𝐵 / 𝐶) ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
97, 8sylan9bb 510 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ)) → (𝐴 < 𝐵 ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
109biimpd 228 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ)) → (𝐴 < 𝐵 → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
1110exp32 421 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))))
1211com34 91 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))))
1312imp32 419 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
14 nnaddcl 11996 . . . . . 6 ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ ∧ (𝐴 / 𝐶) ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ)
1514expcom 414 . . . . 5 ((𝐴 / 𝐶) ∈ ℕ → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ))
16 nnsscn 11978 . . . . . . . . . . 11 ℕ ⊆ ℂ
17 nnne0 12007 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ≠ 0)
18 divcl 11639 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
1916, 17, 18nnssi2 34644 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 / 𝐶) ∈ ℂ)
20 divcl 11639 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℂ)
2116, 17, 20nnssi2 34644 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℂ)
2219, 21anim12i 613 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ)) → ((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ))
23223impdir 1350 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ))
24 npcan 11230 . . . . . . . . 9 (((𝐵 / 𝐶) ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2524ancoms 459 . . . . . . . 8 (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2623, 25syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2726eleq1d 2823 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ ↔ (𝐵 / 𝐶) ∈ ℕ))
2827biimpd 228 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
2915, 28sylan9r 509 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝐴 / 𝐶) ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
3029adantrr 714 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
3113, 30impbid 211 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
32 nncn 11981 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
33323ad2ant2 1133 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℂ)
34 nncn 11981 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
35343ad2ant1 1132 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℂ)
36 nncn 11981 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
3736, 17jca 512 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
38373ad2ant3 1134 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
39 divsubdir 11669 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐵𝐴) / 𝐶) = ((𝐵 / 𝐶) − (𝐴 / 𝐶)))
4033, 35, 38, 39syl3anc 1370 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵𝐴) / 𝐶) = ((𝐵 / 𝐶) − (𝐴 / 𝐶)))
4140eleq1d 2823 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐵𝐴) / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
4241adantr 481 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → (((𝐵𝐴) / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
4331, 42bitr4d 281 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   < clt 11009  cmin 11205   / cdiv 11632  cn 11973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974
This theorem is referenced by:  ee7.2aOLD  34650
  Copyright terms: Public domain W3C validator