Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndivsub Structured version   Visualization version   GIF version

Theorem nndivsub 36470
Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Assertion
Ref Expression
nndivsub (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))

Proof of Theorem nndivsub
StepHypRef Expression
1 nnre 12124 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nnre 12124 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
3 nnre 12124 . . . . . . . . . 10 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
4 nngt0 12148 . . . . . . . . . 10 (𝐶 ∈ ℕ → 0 < 𝐶)
53, 4jca 511 . . . . . . . . 9 (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
6 ltdiv1 11978 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
71, 2, 5, 6syl3an 1160 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
8 nnsub 12161 . . . . . . . 8 (((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ) → ((𝐴 / 𝐶) < (𝐵 / 𝐶) ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
97, 8sylan9bb 509 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ)) → (𝐴 < 𝐵 ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
109biimpd 229 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ)) → (𝐴 < 𝐵 → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
1110exp32 420 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))))
1211com34 91 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))))
1312imp32 418 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
14 nnaddcl 12140 . . . . . 6 ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ ∧ (𝐴 / 𝐶) ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ)
1514expcom 413 . . . . 5 ((𝐴 / 𝐶) ∈ ℕ → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ))
16 nnsscn 12122 . . . . . . . . . . 11 ℕ ⊆ ℂ
17 nnne0 12151 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ≠ 0)
18 divcl 11774 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
1916, 17, 18nnssi2 36468 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 / 𝐶) ∈ ℂ)
20 divcl 11774 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℂ)
2116, 17, 20nnssi2 36468 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℂ)
2219, 21anim12i 613 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ)) → ((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ))
23223impdir 1352 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ))
24 npcan 11361 . . . . . . . . 9 (((𝐵 / 𝐶) ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2524ancoms 458 . . . . . . . 8 (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2623, 25syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2726eleq1d 2814 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ ↔ (𝐵 / 𝐶) ∈ ℕ))
2827biimpd 229 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
2915, 28sylan9r 508 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝐴 / 𝐶) ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
3029adantrr 717 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
3113, 30impbid 212 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
32 nncn 12125 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
33323ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℂ)
34 nncn 12125 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
35343ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℂ)
36 nncn 12125 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
3736, 17jca 511 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
38373ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
39 divsubdir 11807 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐵𝐴) / 𝐶) = ((𝐵 / 𝐶) − (𝐴 / 𝐶)))
4033, 35, 38, 39syl3anc 1373 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵𝐴) / 𝐶) = ((𝐵 / 𝐶) − (𝐴 / 𝐶)))
4140eleq1d 2814 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐵𝐴) / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
4241adantr 480 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → (((𝐵𝐴) / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
4331, 42bitr4d 282 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926   class class class wbr 5089  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998   + caddc 11001   < clt 11138  cmin 11336   / cdiv 11766  cn 12117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118
This theorem is referenced by:  ee7.2aOLD  36474
  Copyright terms: Public domain W3C validator