Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndivsub Structured version   Visualization version   GIF version

Theorem nndivsub 36475
Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Assertion
Ref Expression
nndivsub (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))

Proof of Theorem nndivsub
StepHypRef Expression
1 nnre 12247 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nnre 12247 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
3 nnre 12247 . . . . . . . . . 10 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
4 nngt0 12271 . . . . . . . . . 10 (𝐶 ∈ ℕ → 0 < 𝐶)
53, 4jca 511 . . . . . . . . 9 (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
6 ltdiv1 12106 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
71, 2, 5, 6syl3an 1160 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
8 nnsub 12284 . . . . . . . 8 (((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ) → ((𝐴 / 𝐶) < (𝐵 / 𝐶) ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
97, 8sylan9bb 509 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ)) → (𝐴 < 𝐵 ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
109biimpd 229 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ)) → (𝐴 < 𝐵 → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
1110exp32 420 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))))
1211com34 91 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))))
1312imp32 418 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
14 nnaddcl 12263 . . . . . 6 ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ ∧ (𝐴 / 𝐶) ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ)
1514expcom 413 . . . . 5 ((𝐴 / 𝐶) ∈ ℕ → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ))
16 nnsscn 12245 . . . . . . . . . . 11 ℕ ⊆ ℂ
17 nnne0 12274 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ≠ 0)
18 divcl 11902 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
1916, 17, 18nnssi2 36473 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 / 𝐶) ∈ ℂ)
20 divcl 11902 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℂ)
2116, 17, 20nnssi2 36473 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℂ)
2219, 21anim12i 613 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ)) → ((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ))
23223impdir 1352 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ))
24 npcan 11491 . . . . . . . . 9 (((𝐵 / 𝐶) ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2524ancoms 458 . . . . . . . 8 (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2623, 25syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2726eleq1d 2819 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ ↔ (𝐵 / 𝐶) ∈ ℕ))
2827biimpd 229 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
2915, 28sylan9r 508 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝐴 / 𝐶) ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
3029adantrr 717 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
3113, 30impbid 212 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
32 nncn 12248 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
33323ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℂ)
34 nncn 12248 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
35343ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℂ)
36 nncn 12248 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
3736, 17jca 511 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
38373ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
39 divsubdir 11935 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐵𝐴) / 𝐶) = ((𝐵 / 𝐶) − (𝐴 / 𝐶)))
4033, 35, 38, 39syl3anc 1373 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵𝐴) / 𝐶) = ((𝐵 / 𝐶) − (𝐴 / 𝐶)))
4140eleq1d 2819 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐵𝐴) / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
4241adantr 480 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → (((𝐵𝐴) / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
4331, 42bitr4d 282 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129   + caddc 11132   < clt 11269  cmin 11466   / cdiv 11894  cn 12240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241
This theorem is referenced by:  ee7.2aOLD  36479
  Copyright terms: Public domain W3C validator