Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndivsub Structured version   Visualization version   GIF version

Theorem nndivsub 32771
Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Assertion
Ref Expression
nndivsub (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))

Proof of Theorem nndivsub
StepHypRef Expression
1 nnre 11308 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nnre 11308 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
3 nnre 11308 . . . . . . . . . 10 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
4 nngt0 11331 . . . . . . . . . 10 (𝐶 ∈ ℕ → 0 < 𝐶)
53, 4jca 503 . . . . . . . . 9 (𝐶 ∈ ℕ → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
6 ltdiv1 11168 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
71, 2, 5, 6syl3an 1192 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
8 nnsub 11341 . . . . . . . 8 (((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ) → ((𝐴 / 𝐶) < (𝐵 / 𝐶) ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
97, 8sylan9bb 501 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ)) → (𝐴 < 𝐵 ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
109biimpd 220 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ (𝐵 / 𝐶) ∈ ℕ)) → (𝐴 < 𝐵 → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
1110exp32 409 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))))
1211com34 91 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℕ → (𝐴 < 𝐵 → ((𝐵 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))))
1312imp32 407 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ → ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
14 nnaddcl 11323 . . . . . 6 ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ ∧ (𝐴 / 𝐶) ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ)
1514expcom 400 . . . . 5 ((𝐴 / 𝐶) ∈ ℕ → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ))
16 nnsscn 11306 . . . . . . . . . . 11 ℕ ⊆ ℂ
17 nnne0 11335 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ≠ 0)
18 divcl 10972 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
1916, 17, 18nnssi2 32769 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 / 𝐶) ∈ ℂ)
20 divcl 10972 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℂ)
2116, 17, 20nnssi2 32769 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 / 𝐶) ∈ ℂ)
2219, 21anim12i 602 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ)) → ((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ))
23223impdir 1453 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ))
24 npcan 10571 . . . . . . . . 9 (((𝐵 / 𝐶) ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2524ancoms 448 . . . . . . . 8 (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐶) ∈ ℂ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2623, 25syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) = (𝐵 / 𝐶))
2726eleq1d 2870 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ ↔ (𝐵 / 𝐶) ∈ ℕ))
2827biimpd 220 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((((𝐵 / 𝐶) − (𝐴 / 𝐶)) + (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
2915, 28sylan9r 500 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝐴 / 𝐶) ∈ ℕ) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
3029adantrr 699 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → (((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ → (𝐵 / 𝐶) ∈ ℕ))
3113, 30impbid 203 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
32 nncn 11309 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
33323ad2ant2 1157 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℂ)
34 nncn 11309 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
35343ad2ant1 1156 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℂ)
36 nncn 11309 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
3736, 17jca 503 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
38373ad2ant3 1158 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
39 divsubdir 11002 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐵𝐴) / 𝐶) = ((𝐵 / 𝐶) − (𝐴 / 𝐶)))
4033, 35, 38, 39syl3anc 1483 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵𝐴) / 𝐶) = ((𝐵 / 𝐶) − (𝐴 / 𝐶)))
4140eleq1d 2870 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐵𝐴) / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
4241adantr 468 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → (((𝐵𝐴) / 𝐶) ∈ ℕ ↔ ((𝐵 / 𝐶) − (𝐴 / 𝐶)) ∈ ℕ))
4331, 42bitr4d 273 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978   class class class wbr 4844  (class class class)co 6870  cc 10215  cr 10216  0cc0 10217   + caddc 10220   < clt 10355  cmin 10547   / cdiv 10965  cn 11301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302
This theorem is referenced by:  ee7.2aOLD  32775
  Copyright terms: Public domain W3C validator