Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnssi2 Structured version   Visualization version   GIF version

Theorem nnssi2 35328
Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Hypotheses
Ref Expression
nnssi2.1 ℕ ⊆ 𝐷
nnssi2.2 (𝐵 ∈ ℕ → 𝜑)
nnssi2.3 ((𝐴𝐷𝐵𝐷𝜑) → 𝜓)
Assertion
Ref Expression
nnssi2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝜓)

Proof of Theorem nnssi2
StepHypRef Expression
1 nnssi2.1 . . . . 5 ℕ ⊆ 𝐷
21sseli 3977 . . . 4 (𝐴 ∈ ℕ → 𝐴𝐷)
31sseli 3977 . . . 4 (𝐵 ∈ ℕ → 𝐵𝐷)
4 nnssi2.2 . . . 4 (𝐵 ∈ ℕ → 𝜑)
52, 3, 43anim123i 1151 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴𝐷𝐵𝐷𝜑))
653anidm23 1421 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴𝐷𝐵𝐷𝜑))
7 nnssi2.3 . 2 ((𝐴𝐷𝐵𝐷𝜑) → 𝜓)
86, 7syl 17 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wcel 2106  wss 3947  cn 12208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3954  df-ss 3964
This theorem is referenced by:  nndivsub  35330
  Copyright terms: Public domain W3C validator