Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnssi2 | Structured version Visualization version GIF version |
Description: Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
Ref | Expression |
---|---|
nnssi2.1 | ⊢ ℕ ⊆ 𝐷 |
nnssi2.2 | ⊢ (𝐵 ∈ ℕ → 𝜑) |
nnssi2.3 | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
nnssi2 | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssi2.1 | . . . . 5 ⊢ ℕ ⊆ 𝐷 | |
2 | 1 | sseli 3913 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ 𝐷) |
3 | 1 | sseli 3913 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ 𝐷) |
4 | nnssi2.2 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝜑) | |
5 | 2, 3, 4 | 3anim123i 1149 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝜑)) |
6 | 5 | 3anidm23 1419 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝜑)) |
7 | nnssi2.3 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝜑) → 𝜓) | |
8 | 6, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ⊆ wss 3883 ℕcn 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: nndivsub 34573 |
Copyright terms: Public domain | W3C validator |