MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssn0s Structured version   Visualization version   GIF version

Theorem nnssn0s 28271
Description: The positive surreal integers are a subset of the non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
nnssn0s s ⊆ ℕ0s

Proof of Theorem nnssn0s
StepHypRef Expression
1 df-nns 28266 . 2 s = (ℕ0s ∖ { 0s })
2 difss 4116 . 2 (ℕ0s ∖ { 0s }) ⊆ ℕ0s
31, 2eqsstri 4010 1 s ⊆ ℕ0s
Colors of variables: wff setvar class
Syntax hints:  cdif 3928  wss 3931  {csn 4606   0s c0s 27791  0scnn0s 28263  scnns 28264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-ss 3948  df-nns 28266
This theorem is referenced by:  nnssno  28272  nnn0s  28277  nnn0sd  28278  nnsgt0  28288
  Copyright terms: Public domain W3C validator