MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssn0s Structured version   Visualization version   GIF version

Theorem nnssn0s 28344
Description: The positive surreal integers are a subset of the non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
nnssn0s s ⊆ ℕ0s

Proof of Theorem nnssn0s
StepHypRef Expression
1 df-nns 28339 . 2 s = (ℕ0s ∖ { 0s })
2 difss 4159 . 2 (ℕ0s ∖ { 0s }) ⊆ ℕ0s
31, 2eqsstri 4043 1 s ⊆ ℕ0s
Colors of variables: wff setvar class
Syntax hints:  cdif 3973  wss 3976  {csn 4648   0s c0s 27885  0scnn0s 28336  scnns 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993  df-nns 28339
This theorem is referenced by:  nnssno  28345  nnn0s  28350  nnn0sd  28351  nnsgt0  28360
  Copyright terms: Public domain W3C validator