MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssn0s Structured version   Visualization version   GIF version

Theorem nnssn0s 28290
Description: The positive surreal integers are a subset of the non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
nnssn0s s ⊆ ℕ0s

Proof of Theorem nnssn0s
StepHypRef Expression
1 df-nns 28285 . 2 s = (ℕ0s ∖ { 0s })
2 difss 4130 . 2 (ℕ0s ∖ { 0s }) ⊆ ℕ0s
31, 2eqsstri 4015 1 s ⊆ ℕ0s
Colors of variables: wff setvar class
Syntax hints:  cdif 3945  wss 3948  {csn 4625   0s c0s 27848  0scnn0s 28282  scnns 28283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3466  df-dif 3951  df-ss 3965  df-nns 28285
This theorem is referenced by:  nnssno  28291  nnn0s  28296  nnn0sd  28297  nnsgt0  28306
  Copyright terms: Public domain W3C validator