MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssn0s Structured version   Visualization version   GIF version

Theorem nnssn0s 28078
Description: The positive surreal integers are a subset of the non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
nnssn0s s ⊆ ℕ0s

Proof of Theorem nnssn0s
StepHypRef Expression
1 df-nns 28073 . 2 s = (ℕ0s ∖ { 0s })
2 difss 4131 . 2 (ℕ0s ∖ { 0s }) ⊆ ℕ0s
31, 2eqsstri 4016 1 s ⊆ ℕ0s
Colors of variables: wff setvar class
Syntax hints:  cdif 3945  wss 3948  {csn 4628   0s c0s 27669  0scnn0s 28070  scnns 28071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nns 28073
This theorem is referenced by:  nnssno  28079  nnsgt0  28092
  Copyright terms: Public domain W3C validator