MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssn0s Structured version   Visualization version   GIF version

Theorem nnssn0s 28248
Description: The positive surreal integers are a subset of the non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
nnssn0s s ⊆ ℕ0s

Proof of Theorem nnssn0s
StepHypRef Expression
1 df-nns 28243 . 2 s = (ℕ0s ∖ { 0s })
2 difss 4086 . 2 (ℕ0s ∖ { 0s }) ⊆ ℕ0s
31, 2eqsstri 3981 1 s ⊆ ℕ0s
Colors of variables: wff setvar class
Syntax hints:  cdif 3899  wss 3902  {csn 4576   0s c0s 27764  0scnn0s 28240  scnns 28241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3905  df-ss 3919  df-nns 28243
This theorem is referenced by:  nnssno  28249  nnn0s  28254  nnn0sd  28255  nnsgt0  28265
  Copyright terms: Public domain W3C validator