Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difss | Structured version Visualization version GIF version |
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
difss | ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4057 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐴) | |
2 | 1 | ssriv 3921 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
Copyright terms: Public domain | W3C validator |