| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difss | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| difss | ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4131 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ssriv 3987 | 1 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| Copyright terms: Public domain | W3C validator |