|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nsyld | Structured version Visualization version GIF version | ||
| Description: A negated syllogism deduction. (Contributed by NM, 9-Apr-2005.) | 
| Ref | Expression | 
|---|---|
| nsyld.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | 
| nsyld.2 | ⊢ (𝜑 → (𝜏 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| nsyld | ⊢ (𝜑 → (𝜓 → ¬ 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nsyld.1 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 2 | nsyld.2 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
| 3 | 2 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜏)) | 
| 4 | 1, 3 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → ¬ 𝜏)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: pm2.65d 196 nndomog 9254 onomeneq 9266 pltn2lp 18387 alexsubALTlem4 24059 noinfbnd1lem1 27769 eupth2eucrct 30237 ifeqeqx 32556 cvrat 39425 radcnvrat 44338 | 
| Copyright terms: Public domain | W3C validator |