MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onomeneq Structured version   Visualization version   GIF version

Theorem onomeneq 9224
Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) Avoid ax-pow 5362. (Revised by BTernaryTau, 2-Dec-2024.)
Assertion
Ref Expression
onomeneq ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem onomeneq
StepHypRef Expression
1 endom 8971 . . . . . 6 (𝐴𝐵𝐴𝐵)
2 nnfi 9163 . . . . . . . . 9 (𝐵 ∈ ω → 𝐵 ∈ Fin)
3 domfi 9188 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
4 simpr 485 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
53, 4jca 512 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → (𝐴 ∈ Fin ∧ 𝐴𝐵))
6 domnsymfi 9199 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
76ex 413 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴𝐵 → ¬ 𝐵𝐴))
8 php3 9208 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
98ex 413 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
107, 9nsyld 156 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (𝐴𝐵 → ¬ 𝐵𝐴))
1110adantl 482 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴 ∈ Fin) → (𝐴𝐵 → ¬ 𝐵𝐴))
1211expimpd 454 . . . . . . . . . 10 (𝐵 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴))
135, 12syl5 34 . . . . . . . . 9 (𝐵 ∈ ω → ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴))
142, 13mpand 693 . . . . . . . 8 (𝐵 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
1514adantl 482 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ¬ 𝐵𝐴))
16 eloni 6371 . . . . . . . 8 (𝐴 ∈ On → Ord 𝐴)
17 nnord 7859 . . . . . . . 8 (𝐵 ∈ ω → Ord 𝐵)
18 ordtri1 6394 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
19 ordelpss 6389 . . . . . . . . . . 11 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
2019ancoms 459 . . . . . . . . . 10 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
2120notbid 317 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴))
2218, 21bitrd 278 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2316, 17, 22syl2an 596 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2415, 23sylibrd 258 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
251, 24syl5 34 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
26253impia 1117 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴𝐵)
27 ensymfib 9183 . . . . . . . . 9 (𝐵 ∈ Fin → (𝐵𝐴𝐴𝐵))
282, 27syl 17 . . . . . . . 8 (𝐵 ∈ ω → (𝐵𝐴𝐴𝐵))
29 endom 8971 . . . . . . . 8 (𝐵𝐴𝐵𝐴)
3028, 29syl6bir 253 . . . . . . 7 (𝐵 ∈ ω → (𝐴𝐵𝐵𝐴))
3130imp 407 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
32313adant1 1130 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
33 nndomog 9212 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (𝐵𝐴𝐵𝐴))
3433ancoms 459 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐵𝐴𝐵𝐴))
3534biimp3a 1469 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
3632, 35syld3an3 1409 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
3726, 36eqssd 3998 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 = 𝐵)
38373expia 1121 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
39 enrefnn 9043 . . . 4 (𝐵 ∈ ω → 𝐵𝐵)
40 breq1 5150 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵𝐵𝐵))
4139, 40syl5ibrcom 246 . . 3 (𝐵 ∈ ω → (𝐴 = 𝐵𝐴𝐵))
4241adantl 482 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
4338, 42impbid 211 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3947  wpss 3948   class class class wbr 5147  Ord word 6360  Oncon0 6361  ωcom 7851  cen 8932  cdom 8933  csdm 8934  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939
This theorem is referenced by:  onfin  9226  ficardom  9952  finnisoeu  10104
  Copyright terms: Public domain W3C validator