Proof of Theorem onomeneq
Step | Hyp | Ref
| Expression |
1 | | php5 8978 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → ¬
𝐵 ≈ suc 𝐵) |
2 | 1 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ≈ suc 𝐵) |
3 | | enen1 8886 |
. . . . . . . . 9
⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ suc 𝐵 ↔ 𝐵 ≈ suc 𝐵)) |
4 | 3 | adantl 482 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → (𝐴 ≈ suc 𝐵 ↔ 𝐵 ≈ suc 𝐵)) |
5 | 2, 4 | mtbird 325 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → ¬ 𝐴 ≈ suc 𝐵) |
6 | | peano2 7731 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ω → suc 𝐵 ∈
ω) |
7 | | sssucid 6342 |
. . . . . . . . . . . . . 14
⊢ 𝐵 ⊆ suc 𝐵 |
8 | | ssdomg 8769 |
. . . . . . . . . . . . . 14
⊢ (suc
𝐵 ∈ ω →
(𝐵 ⊆ suc 𝐵 → 𝐵 ≼ suc 𝐵)) |
9 | 6, 7, 8 | mpisyl 21 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ω → 𝐵 ≼ suc 𝐵) |
10 | | endomtr 8781 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ suc 𝐵) → 𝐴 ≼ suc 𝐵) |
11 | 9, 10 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ≼ suc 𝐵) |
12 | 11 | ancoms 459 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵) → 𝐴 ≼ suc 𝐵) |
13 | 12 | a1d 25 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵) → (ω ⊆ 𝐴 → 𝐴 ≼ suc 𝐵)) |
14 | 13 | adantll 711 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → (ω ⊆ 𝐴 → 𝐴 ≼ suc 𝐵)) |
15 | | ssel 3919 |
. . . . . . . . . . . . . . 15
⊢ (ω
⊆ 𝐴 → (𝐵 ∈ ω → 𝐵 ∈ 𝐴)) |
16 | 15 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ω → (ω
⊆ 𝐴 → 𝐵 ∈ 𝐴)) |
17 | 16 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω
⊆ 𝐴 → 𝐵 ∈ 𝐴)) |
18 | | eloni 6275 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On → Ord 𝐴) |
19 | | ordelsuc 7661 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ω ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ⊆ 𝐴)) |
20 | 18, 19 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ⊆ 𝐴)) |
21 | 17, 20 | sylibd 238 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω
⊆ 𝐴 → suc 𝐵 ⊆ 𝐴)) |
22 | | ssdomg 8769 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → (suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) |
23 | 22 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) |
24 | 21, 23 | syld 47 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω
⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) |
25 | 24 | ancoms 459 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (ω
⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) |
26 | 25 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → (ω ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) |
27 | 14, 26 | jcad 513 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → (ω ⊆ 𝐴 → (𝐴 ≼ suc 𝐵 ∧ suc 𝐵 ≼ 𝐴))) |
28 | | sbth 8862 |
. . . . . . . 8
⊢ ((𝐴 ≼ suc 𝐵 ∧ suc 𝐵 ≼ 𝐴) → 𝐴 ≈ suc 𝐵) |
29 | 27, 28 | syl6 35 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → (ω ⊆ 𝐴 → 𝐴 ≈ suc 𝐵)) |
30 | 5, 29 | mtod 197 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → ¬ ω ⊆ 𝐴) |
31 | | ordom 7716 |
. . . . . . . . 9
⊢ Ord
ω |
32 | | ordtri1 6298 |
. . . . . . . . 9
⊢ ((Ord
ω ∧ Ord 𝐴) →
(ω ⊆ 𝐴 ↔
¬ 𝐴 ∈
ω)) |
33 | 31, 18, 32 | sylancr 587 |
. . . . . . . 8
⊢ (𝐴 ∈ On → (ω
⊆ 𝐴 ↔ ¬
𝐴 ∈
ω)) |
34 | 33 | con2bid 355 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝐴 ∈ ω ↔ ¬
ω ⊆ 𝐴)) |
35 | 34 | ad2antrr 723 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → (𝐴 ∈ ω ↔ ¬ ω ⊆
𝐴)) |
36 | 30, 35 | mpbird 256 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ ω) |
37 | | simplr 766 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ ω) |
38 | 36, 37 | jca 512 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) |
39 | | nneneq 8973 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) |
40 | 39 | biimpa 477 |
. . . 4
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
41 | 38, 40 | sylancom 588 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
42 | 41 | ex 413 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 → 𝐴 = 𝐵)) |
43 | | eqeng 8757 |
. . 3
⊢ (𝐴 ∈ On → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
44 | 43 | adantr 481 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
45 | 42, 44 | impbid 211 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) |