MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onomeneq Structured version   Visualization version   GIF version

Theorem onomeneq 9291
Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) Avoid ax-pow 5383. (Revised by BTernaryTau, 2-Dec-2024.)
Assertion
Ref Expression
onomeneq ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem onomeneq
StepHypRef Expression
1 endom 9039 . . . . . 6 (𝐴𝐵𝐴𝐵)
2 nnfi 9233 . . . . . . . . 9 (𝐵 ∈ ω → 𝐵 ∈ Fin)
3 domfi 9255 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
4 simpr 484 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
53, 4jca 511 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → (𝐴 ∈ Fin ∧ 𝐴𝐵))
6 domnsymfi 9266 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
76ex 412 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴𝐵 → ¬ 𝐵𝐴))
8 php3 9275 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
98ex 412 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
107, 9nsyld 156 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (𝐴𝐵 → ¬ 𝐵𝐴))
1110adantl 481 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴 ∈ Fin) → (𝐴𝐵 → ¬ 𝐵𝐴))
1211expimpd 453 . . . . . . . . . 10 (𝐵 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴))
135, 12syl5 34 . . . . . . . . 9 (𝐵 ∈ ω → ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴))
142, 13mpand 694 . . . . . . . 8 (𝐵 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
1514adantl 481 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ¬ 𝐵𝐴))
16 eloni 6405 . . . . . . . 8 (𝐴 ∈ On → Ord 𝐴)
17 nnord 7911 . . . . . . . 8 (𝐵 ∈ ω → Ord 𝐵)
18 ordtri1 6428 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
19 ordelpss 6423 . . . . . . . . . . 11 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
2019ancoms 458 . . . . . . . . . 10 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
2120notbid 318 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴))
2218, 21bitrd 279 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2316, 17, 22syl2an 595 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2415, 23sylibrd 259 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
251, 24syl5 34 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
26253impia 1117 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴𝐵)
27 ensymfib 9250 . . . . . . . . 9 (𝐵 ∈ Fin → (𝐵𝐴𝐴𝐵))
282, 27syl 17 . . . . . . . 8 (𝐵 ∈ ω → (𝐵𝐴𝐴𝐵))
29 endom 9039 . . . . . . . 8 (𝐵𝐴𝐵𝐴)
3028, 29biimtrrdi 254 . . . . . . 7 (𝐵 ∈ ω → (𝐴𝐵𝐵𝐴))
3130imp 406 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
32313adant1 1130 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
33 nndomog 9279 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (𝐵𝐴𝐵𝐴))
3433ancoms 458 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐵𝐴𝐵𝐴))
3534biimp3a 1469 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
3632, 35syld3an3 1409 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
3726, 36eqssd 4026 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 = 𝐵)
38373expia 1121 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
39 enrefnn 9113 . . . 4 (𝐵 ∈ ω → 𝐵𝐵)
40 breq1 5169 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵𝐵𝐵))
4139, 40syl5ibrcom 247 . . 3 (𝐵 ∈ ω → (𝐴 = 𝐵𝐴𝐵))
4241adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
4338, 42impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976  wpss 3977   class class class wbr 5166  Ord word 6394  Oncon0 6395  ωcom 7903  cen 9000  cdom 9001  csdm 9002  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by:  onfin  9293  ficardom  10030  finnisoeu  10182
  Copyright terms: Public domain W3C validator