MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onomeneq Structured version   Visualization version   GIF version

Theorem onomeneq 9266
Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) Avoid ax-pow 5364. (Revised by BTernaryTau, 2-Dec-2024.)
Assertion
Ref Expression
onomeneq ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem onomeneq
StepHypRef Expression
1 endom 9020 . . . . . 6 (𝐴𝐵𝐴𝐵)
2 nnfi 9208 . . . . . . . . 9 (𝐵 ∈ ω → 𝐵 ∈ Fin)
3 domfi 9230 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
4 simpr 484 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
53, 4jca 511 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → (𝐴 ∈ Fin ∧ 𝐴𝐵))
6 domnsymfi 9241 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
76ex 412 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴𝐵 → ¬ 𝐵𝐴))
8 php3 9250 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
98ex 412 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
107, 9nsyld 156 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (𝐴𝐵 → ¬ 𝐵𝐴))
1110adantl 481 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴 ∈ Fin) → (𝐴𝐵 → ¬ 𝐵𝐴))
1211expimpd 453 . . . . . . . . . 10 (𝐵 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴))
135, 12syl5 34 . . . . . . . . 9 (𝐵 ∈ ω → ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴))
142, 13mpand 695 . . . . . . . 8 (𝐵 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
1514adantl 481 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ¬ 𝐵𝐴))
16 eloni 6393 . . . . . . . 8 (𝐴 ∈ On → Ord 𝐴)
17 nnord 7896 . . . . . . . 8 (𝐵 ∈ ω → Ord 𝐵)
18 ordtri1 6416 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
19 ordelpss 6411 . . . . . . . . . . 11 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
2019ancoms 458 . . . . . . . . . 10 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
2120notbid 318 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴))
2218, 21bitrd 279 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2316, 17, 22syl2an 596 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2415, 23sylibrd 259 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
251, 24syl5 34 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
26253impia 1117 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴𝐵)
27 ensymfib 9225 . . . . . . . . 9 (𝐵 ∈ Fin → (𝐵𝐴𝐴𝐵))
282, 27syl 17 . . . . . . . 8 (𝐵 ∈ ω → (𝐵𝐴𝐴𝐵))
29 endom 9020 . . . . . . . 8 (𝐵𝐴𝐵𝐴)
3028, 29biimtrrdi 254 . . . . . . 7 (𝐵 ∈ ω → (𝐴𝐵𝐵𝐴))
3130imp 406 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
32313adant1 1130 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
33 nndomog 9254 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (𝐵𝐴𝐵𝐴))
3433ancoms 458 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐵𝐴𝐵𝐴))
3534biimp3a 1470 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
3632, 35syld3an3 1410 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
3726, 36eqssd 4000 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 = 𝐵)
38373expia 1121 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
39 enrefnn 9088 . . . 4 (𝐵 ∈ ω → 𝐵𝐵)
40 breq1 5145 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵𝐵𝐵))
4139, 40syl5ibrcom 247 . . 3 (𝐵 ∈ ω → (𝐴 = 𝐵𝐴𝐵))
4241adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
4338, 42impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wss 3950  wpss 3951   class class class wbr 5142  Ord word 6382  Oncon0 6383  ωcom 7888  cen 8983  cdom 8984  csdm 8985  Fincfn 8986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-om 7889  df-1o 8507  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990
This theorem is referenced by:  onfin  9268  ficardom  10002  finnisoeu  10154
  Copyright terms: Public domain W3C validator