MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onomeneq Structured version   Visualization version   GIF version

Theorem onomeneq 9242
Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) Avoid ax-pow 5340. (Revised by BTernaryTau, 2-Dec-2024.)
Assertion
Ref Expression
onomeneq ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem onomeneq
StepHypRef Expression
1 endom 8998 . . . . . 6 (𝐴𝐵𝐴𝐵)
2 nnfi 9186 . . . . . . . . 9 (𝐵 ∈ ω → 𝐵 ∈ Fin)
3 domfi 9208 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
4 simpr 484 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
53, 4jca 511 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → (𝐴 ∈ Fin ∧ 𝐴𝐵))
6 domnsymfi 9219 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
76ex 412 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴𝐵 → ¬ 𝐵𝐴))
8 php3 9228 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
98ex 412 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
107, 9nsyld 156 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (𝐴𝐵 → ¬ 𝐵𝐴))
1110adantl 481 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴 ∈ Fin) → (𝐴𝐵 → ¬ 𝐵𝐴))
1211expimpd 453 . . . . . . . . . 10 (𝐵 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴))
135, 12syl5 34 . . . . . . . . 9 (𝐵 ∈ ω → ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴))
142, 13mpand 695 . . . . . . . 8 (𝐵 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
1514adantl 481 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ¬ 𝐵𝐴))
16 eloni 6367 . . . . . . . 8 (𝐴 ∈ On → Ord 𝐴)
17 nnord 7874 . . . . . . . 8 (𝐵 ∈ ω → Ord 𝐵)
18 ordtri1 6390 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
19 ordelpss 6385 . . . . . . . . . . 11 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
2019ancoms 458 . . . . . . . . . 10 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
2120notbid 318 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴))
2218, 21bitrd 279 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2316, 17, 22syl2an 596 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2415, 23sylibrd 259 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
251, 24syl5 34 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
26253impia 1117 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴𝐵)
27 ensymfib 9203 . . . . . . . . 9 (𝐵 ∈ Fin → (𝐵𝐴𝐴𝐵))
282, 27syl 17 . . . . . . . 8 (𝐵 ∈ ω → (𝐵𝐴𝐴𝐵))
29 endom 8998 . . . . . . . 8 (𝐵𝐴𝐵𝐴)
3028, 29biimtrrdi 254 . . . . . . 7 (𝐵 ∈ ω → (𝐴𝐵𝐵𝐴))
3130imp 406 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
32313adant1 1130 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
33 nndomog 9232 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (𝐵𝐴𝐵𝐴))
3433ancoms 458 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐵𝐴𝐵𝐴))
3534biimp3a 1471 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
3632, 35syld3an3 1411 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐵𝐴)
3726, 36eqssd 3981 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 = 𝐵)
38373expia 1121 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
39 enrefnn 9066 . . . 4 (𝐵 ∈ ω → 𝐵𝐵)
40 breq1 5127 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵𝐵𝐵))
4139, 40syl5ibrcom 247 . . 3 (𝐵 ∈ ω → (𝐴 = 𝐵𝐴𝐵))
4241adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
4338, 42impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931  wpss 3932   class class class wbr 5124  Ord word 6356  Oncon0 6357  ωcom 7866  cen 8961  cdom 8962  csdm 8963  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968
This theorem is referenced by:  onfin  9244  ficardom  9980  finnisoeu  10132
  Copyright terms: Public domain W3C validator