Proof of Theorem onomeneq
| Step | Hyp | Ref
| Expression |
| 1 | | endom 8998 |
. . . . . 6
⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| 2 | | nnfi 9186 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → 𝐵 ∈ Fin) |
| 3 | | domfi 9208 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵) → 𝐴 ∈ Fin) |
| 4 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵) → 𝐴 ≼ 𝐵) |
| 5 | 3, 4 | jca 511 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵) → (𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵)) |
| 6 | | domnsymfi 9219 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| 7 | 6 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Fin → (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
| 8 | | php3 9228 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
| 9 | 8 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Fin → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
| 10 | 7, 9 | nsyld 156 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Fin → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
| 11 | 10 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ Fin) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
| 12 | 11 | expimpd 453 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ⊊ 𝐴)) |
| 13 | 5, 12 | syl5 34 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ⊊ 𝐴)) |
| 14 | 2, 13 | mpand 695 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
| 15 | 14 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
| 16 | | eloni 6367 |
. . . . . . . 8
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 17 | | nnord 7874 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → Ord 𝐵) |
| 18 | | ordtri1 6390 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| 19 | | ordelpss 6385 |
. . . . . . . . . . 11
⊢ ((Ord
𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) |
| 20 | 19 | ancoms 458 |
. . . . . . . . . 10
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) |
| 21 | 20 | notbid 318 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴)) |
| 22 | 18, 21 | bitrd 279 |
. . . . . . . 8
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
| 23 | 16, 17, 22 | syl2an 596 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
| 24 | 15, 23 | sylibrd 259 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 25 | 1, 24 | syl5 34 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 26 | 25 | 3impia 1117 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵) → 𝐴 ⊆ 𝐵) |
| 27 | | ensymfib 9203 |
. . . . . . . . 9
⊢ (𝐵 ∈ Fin → (𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵)) |
| 28 | 2, 27 | syl 17 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → (𝐵 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵)) |
| 29 | | endom 8998 |
. . . . . . . 8
⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) |
| 30 | 28, 29 | biimtrrdi 254 |
. . . . . . 7
⊢ (𝐵 ∈ ω → (𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴)) |
| 31 | 30 | imp 406 |
. . . . . 6
⊢ ((𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵) → 𝐵 ≼ 𝐴) |
| 32 | 31 | 3adant1 1130 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵) → 𝐵 ≼ 𝐴) |
| 33 | | nndomog 9232 |
. . . . . . 7
⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (𝐵 ≼ 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
| 34 | 33 | ancoms 458 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐵 ≼ 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
| 35 | 34 | biimp3a 1471 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐵 ≼ 𝐴) → 𝐵 ⊆ 𝐴) |
| 36 | 32, 35 | syld3an3 1411 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵) → 𝐵 ⊆ 𝐴) |
| 37 | 26, 36 | eqssd 3981 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
| 38 | 37 | 3expia 1121 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 → 𝐴 = 𝐵)) |
| 39 | | enrefnn 9066 |
. . . 4
⊢ (𝐵 ∈ ω → 𝐵 ≈ 𝐵) |
| 40 | | breq1 5127 |
. . . 4
⊢ (𝐴 = 𝐵 → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐵)) |
| 41 | 39, 40 | syl5ibrcom 247 |
. . 3
⊢ (𝐵 ∈ ω → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
| 42 | 41 | adantl 481 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
| 43 | 38, 42 | impbid 212 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) |