Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat Structured version   Visualization version   GIF version

Theorem cvrat 36562
Description: A nonzero Hilbert lattice element less than the join of two atoms is an atom. (atcvati 30166 analog.) (Contributed by NM, 22-Nov-2011.)
Hypotheses
Ref Expression
cvrat.b 𝐵 = (Base‘𝐾)
cvrat.s < = (lt‘𝐾)
cvrat.j = (join‘𝐾)
cvrat.z 0 = (0.‘𝐾)
cvrat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑃 𝑄)) → 𝑋𝐴))

Proof of Theorem cvrat
StepHypRef Expression
1 cvrat.b . . . 4 𝐵 = (Base‘𝐾)
2 cvrat.s . . . 4 < = (lt‘𝐾)
3 cvrat.j . . . 4 = (join‘𝐾)
4 cvrat.z . . . 4 0 = (0.‘𝐾)
5 cvrat.a . . . 4 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5cvratlem 36561 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))
7 hllat 36503 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
87adantr 483 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
9 simpr2 1191 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
101, 5atbase 36429 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
119, 10syl 17 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
12 simpr3 1192 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
131, 5atbase 36429 . . . . . . . . 9 (𝑄𝐴𝑄𝐵)
1412, 13syl 17 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
151, 3latjcom 17672 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
168, 11, 14, 15syl3anc 1367 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
1716breq2d 5081 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 < (𝑃 𝑄) ↔ 𝑋 < (𝑄 𝑃)))
1817anbi2d 630 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑃 𝑄)) ↔ (𝑋0𝑋 < (𝑄 𝑃))))
19 simpl 485 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
20 simpr1 1190 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
211, 2, 3, 4, 5cvratlem 36561 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑃𝐴)) ∧ (𝑋0𝑋 < (𝑄 𝑃))) → (¬ 𝑄(le‘𝐾)𝑋𝑋𝐴))
2221ex 415 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑃𝐴)) → ((𝑋0𝑋 < (𝑄 𝑃)) → (¬ 𝑄(le‘𝐾)𝑋𝑋𝐴)))
2319, 20, 12, 9, 22syl13anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑄 𝑃)) → (¬ 𝑄(le‘𝐾)𝑋𝑋𝐴)))
2418, 23sylbid 242 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑃 𝑄)) → (¬ 𝑄(le‘𝐾)𝑋𝑋𝐴)))
2524imp 409 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑄(le‘𝐾)𝑋𝑋𝐴))
26 hlpos 36506 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2726adantr 483 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Poset)
281, 3latjcl 17664 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
298, 11, 14, 28syl3anc 1367 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
30 eqid 2824 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
311, 30, 2pltnle 17579 . . . . . . . . 9 (((𝐾 ∈ Poset ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) ∧ 𝑋 < (𝑃 𝑄)) → ¬ (𝑃 𝑄)(le‘𝐾)𝑋)
3231ex 415 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 < (𝑃 𝑄) → ¬ (𝑃 𝑄)(le‘𝐾)𝑋))
3327, 20, 29, 32syl3anc 1367 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 < (𝑃 𝑄) → ¬ (𝑃 𝑄)(le‘𝐾)𝑋))
341, 30, 3latjle12 17675 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)) → ((𝑃(le‘𝐾)𝑋𝑄(le‘𝐾)𝑋) ↔ (𝑃 𝑄)(le‘𝐾)𝑋))
358, 11, 14, 20, 34syl13anc 1368 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃(le‘𝐾)𝑋𝑄(le‘𝐾)𝑋) ↔ (𝑃 𝑄)(le‘𝐾)𝑋))
3635biimpd 231 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃(le‘𝐾)𝑋𝑄(le‘𝐾)𝑋) → (𝑃 𝑄)(le‘𝐾)𝑋))
3733, 36nsyld 159 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 < (𝑃 𝑄) → ¬ (𝑃(le‘𝐾)𝑋𝑄(le‘𝐾)𝑋)))
38 ianor 978 . . . . . 6 (¬ (𝑃(le‘𝐾)𝑋𝑄(le‘𝐾)𝑋) ↔ (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋))
3937, 38syl6ib 253 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋)))
4039imp 409 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 < (𝑃 𝑄)) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋))
4140adantrl 714 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋))
426, 25, 41mpjaod 856 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → 𝑋𝐴)
4342ex 415 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑃 𝑄)) → 𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  cfv 6358  (class class class)co 7159  Basecbs 16486  lecple 16575  Posetcpo 17553  ltcplt 17554  joincjn 17557  0.cp0 17650  Latclat 17658  Atomscatm 36403  HLchlt 36490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-lat 17659  df-clat 17721  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491
This theorem is referenced by:  cvrat2  36569
  Copyright terms: Public domain W3C validator