Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat Structured version   Visualization version   GIF version

Theorem cvrat 39025
Description: A nonzero Hilbert lattice element less than the join of two atoms is an atom. (atcvati 32268 analog.) (Contributed by NM, 22-Nov-2011.)
Hypotheses
Ref Expression
cvrat.b 𝐵 = (Base‘𝐾)
cvrat.s < = (lt‘𝐾)
cvrat.j = (join‘𝐾)
cvrat.z 0 = (0.‘𝐾)
cvrat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑃 𝑄)) → 𝑋𝐴))

Proof of Theorem cvrat
StepHypRef Expression
1 cvrat.b . . . 4 𝐵 = (Base‘𝐾)
2 cvrat.s . . . 4 < = (lt‘𝐾)
3 cvrat.j . . . 4 = (join‘𝐾)
4 cvrat.z . . . 4 0 = (0.‘𝐾)
5 cvrat.a . . . 4 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5cvratlem 39024 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))
7 hllat 38965 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
87adantr 479 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
9 simpr2 1192 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
101, 5atbase 38891 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
119, 10syl 17 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
12 simpr3 1193 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
131, 5atbase 38891 . . . . . . . . 9 (𝑄𝐴𝑄𝐵)
1412, 13syl 17 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
151, 3latjcom 18442 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
168, 11, 14, 15syl3anc 1368 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
1716breq2d 5161 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 < (𝑃 𝑄) ↔ 𝑋 < (𝑄 𝑃)))
1817anbi2d 628 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑃 𝑄)) ↔ (𝑋0𝑋 < (𝑄 𝑃))))
19 simpl 481 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
20 simpr1 1191 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
211, 2, 3, 4, 5cvratlem 39024 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑃𝐴)) ∧ (𝑋0𝑋 < (𝑄 𝑃))) → (¬ 𝑄(le‘𝐾)𝑋𝑋𝐴))
2221ex 411 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑃𝐴)) → ((𝑋0𝑋 < (𝑄 𝑃)) → (¬ 𝑄(le‘𝐾)𝑋𝑋𝐴)))
2319, 20, 12, 9, 22syl13anc 1369 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑄 𝑃)) → (¬ 𝑄(le‘𝐾)𝑋𝑋𝐴)))
2418, 23sylbid 239 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑃 𝑄)) → (¬ 𝑄(le‘𝐾)𝑋𝑋𝐴)))
2524imp 405 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑄(le‘𝐾)𝑋𝑋𝐴))
26 hlpos 38968 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2726adantr 479 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Poset)
281, 3latjcl 18434 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
298, 11, 14, 28syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
30 eqid 2725 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
311, 30, 2pltnle 18333 . . . . . . . . 9 (((𝐾 ∈ Poset ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) ∧ 𝑋 < (𝑃 𝑄)) → ¬ (𝑃 𝑄)(le‘𝐾)𝑋)
3231ex 411 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 < (𝑃 𝑄) → ¬ (𝑃 𝑄)(le‘𝐾)𝑋))
3327, 20, 29, 32syl3anc 1368 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 < (𝑃 𝑄) → ¬ (𝑃 𝑄)(le‘𝐾)𝑋))
341, 30, 3latjle12 18445 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵𝑋𝐵)) → ((𝑃(le‘𝐾)𝑋𝑄(le‘𝐾)𝑋) ↔ (𝑃 𝑄)(le‘𝐾)𝑋))
358, 11, 14, 20, 34syl13anc 1369 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃(le‘𝐾)𝑋𝑄(le‘𝐾)𝑋) ↔ (𝑃 𝑄)(le‘𝐾)𝑋))
3635biimpd 228 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃(le‘𝐾)𝑋𝑄(le‘𝐾)𝑋) → (𝑃 𝑄)(le‘𝐾)𝑋))
3733, 36nsyld 156 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 < (𝑃 𝑄) → ¬ (𝑃(le‘𝐾)𝑋𝑄(le‘𝐾)𝑋)))
38 ianor 979 . . . . . 6 (¬ (𝑃(le‘𝐾)𝑋𝑄(le‘𝐾)𝑋) ↔ (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋))
3937, 38imbitrdi 250 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋)))
4039imp 405 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 < (𝑃 𝑄)) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋))
4140adantrl 714 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋))
426, 25, 41mpjaod 858 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → 𝑋𝐴)
4342ex 411 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑋 < (𝑃 𝑄)) → 𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cfv 6549  (class class class)co 7419  Basecbs 17183  lecple 17243  Posetcpo 18302  ltcplt 18303  joincjn 18306  0.cp0 18418  Latclat 18426  Atomscatm 38865  HLchlt 38952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-lat 18427  df-clat 18494  df-oposet 38778  df-ol 38780  df-oml 38781  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953
This theorem is referenced by:  cvrat2  39032
  Copyright terms: Public domain W3C validator