Proof of Theorem cvrat
Step | Hyp | Ref
| Expression |
1 | | cvrat.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
2 | | cvrat.s |
. . . 4
⊢ < =
(lt‘𝐾) |
3 | | cvrat.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
4 | | cvrat.z |
. . . 4
⊢ 0 =
(0.‘𝐾) |
5 | | cvrat.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 1, 2, 3, 4, 5 | cvratlem 37362 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴)) |
7 | | hllat 37304 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
8 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
9 | | simpr2 1193 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
10 | 1, 5 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) |
12 | | simpr3 1194 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
13 | 1, 5 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) |
15 | 1, 3 | latjcom 18080 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
16 | 8, 11, 14, 15 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
17 | 16 | breq2d 5082 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 < (𝑃 ∨ 𝑄) ↔ 𝑋 < (𝑄 ∨ 𝑃))) |
18 | 17 | anbi2d 628 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄)) ↔ (𝑋 ≠ 0 ∧ 𝑋 < (𝑄 ∨ 𝑃)))) |
19 | | simpl 482 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) |
20 | | simpr1 1192 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) |
21 | 1, 2, 3, 4, 5 | cvratlem 37362 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑄 ∨ 𝑃))) → (¬ 𝑄(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴)) |
22 | 21 | ex 412 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑄 ∨ 𝑃)) → (¬ 𝑄(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴))) |
23 | 19, 20, 12, 9, 22 | syl13anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑄 ∨ 𝑃)) → (¬ 𝑄(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴))) |
24 | 18, 23 | sylbid 239 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄)) → (¬ 𝑄(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴))) |
25 | 24 | imp 406 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄))) → (¬ 𝑄(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴)) |
26 | | hlpos 37307 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
27 | 26 | adantr 480 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Poset) |
28 | 1, 3 | latjcl 18072 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
29 | 8, 11, 14, 28 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
30 | | eqid 2738 |
. . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) |
31 | 1, 30, 2 | pltnle 17971 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) ∧ 𝑋 < (𝑃 ∨ 𝑄)) → ¬ (𝑃 ∨ 𝑄)(le‘𝐾)𝑋) |
32 | 31 | ex 412 |
. . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋 < (𝑃 ∨ 𝑄) → ¬ (𝑃 ∨ 𝑄)(le‘𝐾)𝑋)) |
33 | 27, 20, 29, 32 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 < (𝑃 ∨ 𝑄) → ¬ (𝑃 ∨ 𝑄)(le‘𝐾)𝑋)) |
34 | 1, 30, 3 | latjle12 18083 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑃(le‘𝐾)𝑋 ∧ 𝑄(le‘𝐾)𝑋) ↔ (𝑃 ∨ 𝑄)(le‘𝐾)𝑋)) |
35 | 8, 11, 14, 20, 34 | syl13anc 1370 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃(le‘𝐾)𝑋 ∧ 𝑄(le‘𝐾)𝑋) ↔ (𝑃 ∨ 𝑄)(le‘𝐾)𝑋)) |
36 | 35 | biimpd 228 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃(le‘𝐾)𝑋 ∧ 𝑄(le‘𝐾)𝑋) → (𝑃 ∨ 𝑄)(le‘𝐾)𝑋)) |
37 | 33, 36 | nsyld 156 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 < (𝑃 ∨ 𝑄) → ¬ (𝑃(le‘𝐾)𝑋 ∧ 𝑄(le‘𝐾)𝑋))) |
38 | | ianor 978 |
. . . . . 6
⊢ (¬
(𝑃(le‘𝐾)𝑋 ∧ 𝑄(le‘𝐾)𝑋) ↔ (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋)) |
39 | 37, 38 | syl6ib 250 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 < (𝑃 ∨ 𝑄) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋))) |
40 | 39 | imp 406 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋 < (𝑃 ∨ 𝑄)) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋)) |
41 | 40 | adantrl 712 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋)) |
42 | 6, 25, 41 | mpjaod 856 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄))) → 𝑋 ∈ 𝐴) |
43 | 42 | ex 412 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄)) → 𝑋 ∈ 𝐴)) |