Proof of Theorem cvrat
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvrat.b | . . . 4
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | cvrat.s | . . . 4
⊢  < =
(lt‘𝐾) | 
| 3 |  | cvrat.j | . . . 4
⊢  ∨ =
(join‘𝐾) | 
| 4 |  | cvrat.z | . . . 4
⊢  0 =
(0.‘𝐾) | 
| 5 |  | cvrat.a | . . . 4
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 | 1, 2, 3, 4, 5 | cvratlem 39423 | . . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴)) | 
| 7 |  | hllat 39364 | . . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | 
| 8 | 7 | adantr 480 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) | 
| 9 |  | simpr2 1196 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | 
| 10 | 1, 5 | atbase 39290 | . . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | 
| 11 | 9, 10 | syl 17 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) | 
| 12 |  | simpr3 1197 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | 
| 13 | 1, 5 | atbase 39290 | . . . . . . . . 9
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) | 
| 14 | 12, 13 | syl 17 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) | 
| 15 | 1, 3 | latjcom 18492 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) | 
| 16 | 8, 11, 14, 15 | syl3anc 1373 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) | 
| 17 | 16 | breq2d 5155 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 < (𝑃 ∨ 𝑄) ↔ 𝑋 < (𝑄 ∨ 𝑃))) | 
| 18 | 17 | anbi2d 630 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄)) ↔ (𝑋 ≠ 0 ∧ 𝑋 < (𝑄 ∨ 𝑃)))) | 
| 19 |  | simpl 482 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) | 
| 20 |  | simpr1 1195 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) | 
| 21 | 1, 2, 3, 4, 5 | cvratlem 39423 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑄 ∨ 𝑃))) → (¬ 𝑄(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴)) | 
| 22 | 21 | ex 412 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑄 ∨ 𝑃)) → (¬ 𝑄(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴))) | 
| 23 | 19, 20, 12, 9, 22 | syl13anc 1374 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑄 ∨ 𝑃)) → (¬ 𝑄(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴))) | 
| 24 | 18, 23 | sylbid 240 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄)) → (¬ 𝑄(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴))) | 
| 25 | 24 | imp 406 | . . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄))) → (¬ 𝑄(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴)) | 
| 26 |  | hlpos 39367 | . . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | 
| 27 | 26 | adantr 480 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Poset) | 
| 28 | 1, 3 | latjcl 18484 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) | 
| 29 | 8, 11, 14, 28 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) | 
| 30 |  | eqid 2737 | . . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 31 | 1, 30, 2 | pltnle 18383 | . . . . . . . . 9
⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) ∧ 𝑋 < (𝑃 ∨ 𝑄)) → ¬ (𝑃 ∨ 𝑄)(le‘𝐾)𝑋) | 
| 32 | 31 | ex 412 | . . . . . . . 8
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋 < (𝑃 ∨ 𝑄) → ¬ (𝑃 ∨ 𝑄)(le‘𝐾)𝑋)) | 
| 33 | 27, 20, 29, 32 | syl3anc 1373 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 < (𝑃 ∨ 𝑄) → ¬ (𝑃 ∨ 𝑄)(le‘𝐾)𝑋)) | 
| 34 | 1, 30, 3 | latjle12 18495 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑃(le‘𝐾)𝑋 ∧ 𝑄(le‘𝐾)𝑋) ↔ (𝑃 ∨ 𝑄)(le‘𝐾)𝑋)) | 
| 35 | 8, 11, 14, 20, 34 | syl13anc 1374 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃(le‘𝐾)𝑋 ∧ 𝑄(le‘𝐾)𝑋) ↔ (𝑃 ∨ 𝑄)(le‘𝐾)𝑋)) | 
| 36 | 35 | biimpd 229 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃(le‘𝐾)𝑋 ∧ 𝑄(le‘𝐾)𝑋) → (𝑃 ∨ 𝑄)(le‘𝐾)𝑋)) | 
| 37 | 33, 36 | nsyld 156 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 < (𝑃 ∨ 𝑄) → ¬ (𝑃(le‘𝐾)𝑋 ∧ 𝑄(le‘𝐾)𝑋))) | 
| 38 |  | ianor 984 | . . . . . 6
⊢ (¬
(𝑃(le‘𝐾)𝑋 ∧ 𝑄(le‘𝐾)𝑋) ↔ (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋)) | 
| 39 | 37, 38 | imbitrdi 251 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 < (𝑃 ∨ 𝑄) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋))) | 
| 40 | 39 | imp 406 | . . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋 < (𝑃 ∨ 𝑄)) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋)) | 
| 41 | 40 | adantrl 716 | . . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋 ∨ ¬ 𝑄(le‘𝐾)𝑋)) | 
| 42 | 6, 25, 41 | mpjaod 861 | . 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄))) → 𝑋 ∈ 𝐴) | 
| 43 | 42 | ex 412 | 1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄)) → 𝑋 ∈ 𝐴)) |