|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm2.65d | Structured version Visualization version GIF version | ||
| Description: Deduction for proof by contradiction. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 26-May-2013.) | 
| Ref | Expression | 
|---|---|
| pm2.65d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| pm2.65d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | 
| Ref | Expression | 
|---|---|
| pm2.65d | ⊢ (𝜑 → ¬ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.65d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 2 | pm2.65d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | nsyld 156 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) | 
| 4 | 3 | pm2.01d 190 | 1 ⊢ (𝜑 → ¬ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: mtod 198 pm2.65da 816 unxpdomlem2 9288 cardlim 10013 winainflem 10734 winalim2 10737 discr 14280 sqrmo 15291 vdwnnlem3 17036 psdmul 22171 nmlno0lem 30813 nmlnop0iALT 32015 iooelexlt 37364 | 
| Copyright terms: Public domain | W3C validator |