Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.65d | Structured version Visualization version GIF version |
Description: Deduction for proof by contradiction. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 26-May-2013.) |
Ref | Expression |
---|---|
pm2.65d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
pm2.65d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
pm2.65d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
2 | pm2.65d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | nsyld 159 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
4 | 3 | pm2.01d 193 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mtod 201 pm2.65da 817 unxpdomlem2 8883 cardlim 9588 winainflem 10307 winalim2 10310 discr 13807 sqrmo 14815 vdwnnlem3 16550 nmlno0lem 28874 nmlnop0iALT 30076 iooelexlt 35270 |
Copyright terms: Public domain | W3C validator |