Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  radcnvrat Structured version   Visualization version   GIF version

Theorem radcnvrat 44310
Description: Let 𝐿 be the limit, if one exists, of the ratio (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) (as in the ratio test cvgdvgrat 44309) as 𝑘 increases. Then the radius of convergence of power series Σ𝑛 ∈ ℕ0((𝐴𝑛) · (𝑥𝑛)) is (1 / 𝐿) if 𝐿 is nonzero. Proof "The limit involved in the ratio test..." in https://en.wikipedia.org/wiki/Radius_of_convergence 44309 —a few lines that evidently hide quite an involved process to confirm. (Contributed by Steve Rodriguez, 8-Mar-2020.)
Hypotheses
Ref Expression
radcnvrat.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnvrat.a (𝜑𝐴:ℕ0⟶ℂ)
radcnvrat.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvrat.rat 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
radcnvrat.z 𝑍 = (ℤ𝑀)
radcnvrat.m (𝜑𝑀 ∈ ℕ0)
radcnvrat.n0 ((𝜑𝑘𝑍) → (𝐴𝑘) ≠ 0)
radcnvrat.l (𝜑𝐷𝐿)
radcnvrat.ln0 (𝜑𝐿 ≠ 0)
Assertion
Ref Expression
radcnvrat (𝜑𝑅 = (1 / 𝐿))
Distinct variable groups:   𝑘,𝑛,𝑥,𝜑   𝐴,𝑛,𝑥   𝑘,𝐺,𝑛,𝑥   𝑘,𝑟,𝑥,𝐺   𝑘,𝐿,𝑥   𝑘,𝑍,𝑛   𝐷,𝑘   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘,𝑟)   𝐷(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑘,𝑛,𝑟)   𝐿(𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)   𝑍(𝑥,𝑟)

Proof of Theorem radcnvrat
StepHypRef Expression
1 radcnvrat.r . 2 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
2 xrltso 13108 . . . 4 < Or ℝ*
32a1i 11 . . 3 (𝜑 → < Or ℝ*)
4 radcnvrat.z . . . . . 6 𝑍 = (ℤ𝑀)
5 radcnvrat.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
65nn0zd 12562 . . . . . 6 (𝜑𝑀 ∈ ℤ)
74reseq2i 5950 . . . . . . 7 (𝐷𝑍) = (𝐷 ↾ (ℤ𝑀))
8 radcnvrat.l . . . . . . . 8 (𝜑𝐷𝐿)
9 radcnvrat.rat . . . . . . . . . 10 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
10 nn0ex 12455 . . . . . . . . . . 11 0 ∈ V
1110mptex 7200 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ∈ V
129, 11eqeltri 2825 . . . . . . . . 9 𝐷 ∈ V
13 climres 15548 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐷 ∈ V) → ((𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿𝐷𝐿))
146, 12, 13sylancl 586 . . . . . . . 8 (𝜑 → ((𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿𝐷𝐿))
158, 14mpbird 257 . . . . . . 7 (𝜑 → (𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿)
167, 15eqbrtrid 5145 . . . . . 6 (𝜑 → (𝐷𝑍) ⇝ 𝐿)
179reseq1i 5949 . . . . . . . . 9 (𝐷𝑍) = ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ↾ 𝑍)
18 eluznn0 12883 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
195, 18sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
2019ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℕ0))
2120ssrdv 3955 . . . . . . . . . . 11 (𝜑 → (ℤ𝑀) ⊆ ℕ0)
224, 21eqsstrid 3988 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℕ0)
2322resmptd 6014 . . . . . . . . 9 (𝜑 → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ↾ 𝑍) = (𝑘𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))))
2417, 23eqtrid 2777 . . . . . . . 8 (𝜑 → (𝐷𝑍) = (𝑘𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))))
25 fvexd 6876 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ V)
2624, 25fvmpt2d 6984 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
274peano2uzs 12868 . . . . . . . . . 10 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
2822sselda 3949 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝑘 + 1) ∈ ℕ0)
29 radcnvrat.a . . . . . . . . . . . 12 (𝜑𝐴:ℕ0⟶ℂ)
3029ffvelcdmda 7059 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3128, 30syldan 591 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3227, 31sylan2 593 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3322sselda 3949 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑘 ∈ ℕ0)
3429ffvelcdmda 7059 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3533, 34syldan 591 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴𝑘) ∈ ℂ)
36 radcnvrat.n0 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴𝑘) ≠ 0)
3732, 35, 36divcld 11965 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) ∈ ℂ)
3837abscld 15412 . . . . . . 7 ((𝜑𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ ℝ)
3926, 38eqeltrd 2829 . . . . . 6 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) ∈ ℝ)
404, 6, 16, 39climrecl 15556 . . . . 5 (𝜑𝐿 ∈ ℝ)
41 radcnvrat.ln0 . . . . 5 (𝜑𝐿 ≠ 0)
4240, 41rereccld 12016 . . . 4 (𝜑 → (1 / 𝐿) ∈ ℝ)
4342rexrd 11231 . . 3 (𝜑 → (1 / 𝐿) ∈ ℝ*)
44 simpr 484 . . . 4 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
45 elrabi 3657 . . . . 5 (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → 𝑥 ∈ ℝ)
4642adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (1 / 𝐿) ∈ ℝ)
47 recn 11165 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4847abscld 15412 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
4948adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℝ)
5046, 49ltlend 11326 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
5150simplbda 499 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → (abs‘𝑥) ≠ (1 / 𝐿))
5250adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
53 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿))
5453biantrud 531 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
5546, 49lenltd 11327 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
5655adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
5752, 54, 563bitr2d 307 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
58 1cnd 11176 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℂ)
5949recnd 11209 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℂ)
6040recnd 11209 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ ℂ)
6160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 𝐿 ∈ ℂ)
6241adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 𝐿 ≠ 0)
6358, 59, 61, 62divmul3d 11999 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) = (abs‘𝑥) ↔ 1 = ((abs‘𝑥) · 𝐿)))
64 eqcom 2737 . . . . . . . . . . . . . . . . 17 ((1 / 𝐿) = (abs‘𝑥) ↔ (abs‘𝑥) = (1 / 𝐿))
65 eqcom 2737 . . . . . . . . . . . . . . . . 17 (1 = ((abs‘𝑥) · 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1)
6663, 64, 653bitr3g 313 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) = (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1))
6766necon3bid 2970 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) ≠ (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) ≠ 1))
6867biimpa 476 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) · 𝐿) ≠ 1)
69 1red 11182 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℝ)
70 fvres 6880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍 → ((𝐷𝑍)‘𝑘) = (𝐷𝑘))
7170adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) = (𝐷𝑘))
7271, 39eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐷𝑘) ∈ ℝ)
7337absge0d 15420 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
7473, 26breqtrrd 5138 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 0 ≤ ((𝐷𝑍)‘𝑘))
7574, 71breqtrd 5136 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 0 ≤ (𝐷𝑘))
764, 6, 8, 72, 75climge0 15557 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝐿)
7740, 76, 41ne0gt0d 11318 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝐿)
7840, 77elrpd 12999 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ ℝ+)
7978adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝐿 ∈ ℝ+)
8049, 69, 79ltmuldivd 13049 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿)))
8180adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿)))
82 elun 4119 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) ↔ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})))
83 inundif 4445 . . . . . . . . . . . . . . . . . . 19 ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) = ℝ
8483eleq2i 2821 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ)
8582, 84bitr3i 277 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ)
86 elin 3933 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℝ ∩ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ∈ {0}))
8786simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∩ {0}) → 𝑥 ∈ {0})
88 elsni 4609 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {0} → 𝑥 = 0)
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∩ {0}) → 𝑥 = 0)
90 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
91 abs0 15258 . . . . . . . . . . . . . . . . . . . . . . . . 25 (abs‘0) = 0
9290, 91eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (abs‘𝑥) = 0)
9392oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → ((abs‘𝑥) · 𝐿) = (0 · 𝐿))
9460mul02d 11379 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0 · 𝐿) = 0)
9593, 94sylan9eqr 2787 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 = 0) → ((abs‘𝑥) · 𝐿) = 0)
96 0lt1 11707 . . . . . . . . . . . . . . . . . . . . . 22 0 < 1
9795, 96eqbrtrdi 5149 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = 0) → ((abs‘𝑥) · 𝐿) < 1)
98 radcnvrat.g . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
9998, 29radcnv0 26332 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
100 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
10199, 100syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥 = 0 → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
102101imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = 0) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
10397, 1022thd 265 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 = 0) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
10489, 103sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℝ ∩ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
105104adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∩ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
106 ax-resscn 11132 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ⊆ ℂ
107 ssdif 4110 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ ⊆ ℂ → (ℝ ∖ {0}) ⊆ (ℂ ∖ {0}))
108106, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ ∖ {0}) ⊆ (ℂ ∖ {0})
109108sseli 3945 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0}))
110 nn0uz 12842 . . . . . . . . . . . . . . . . . . . . . 22 0 = (ℤ‘0)
1115ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → 𝑀 ∈ ℕ0)
112 fvexd 6876 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝐺𝑥) ∈ V)
113 eldifi 4097 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
11498a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))))
11510mptex 7200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) ∈ V
116115a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥 ∈ ℂ) → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) ∈ V)
117114, 116fvmpt2d 6984 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
118117adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
119 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
120 oveq2 7398 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
121119, 120oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
122121adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝑛 = 𝑘) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
123 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
124 ovexd 7425 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ V)
125118, 122, 123, 124fvmptd 6978 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
12634adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
127 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℂ)
128127, 123expcld 14118 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
129126, 128mulcld 11201 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
130125, 129eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
131113, 130sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
132131adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
13333adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → 𝑘 ∈ ℕ0)
134133, 125syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
135113, 134sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
13635adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴𝑘) ∈ ℂ)
137113adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
138137adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑥 ∈ ℂ)
13933adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℕ0)
140138, 139expcld 14118 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥𝑘) ∈ ℂ)
14136adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴𝑘) ≠ 0)
142 eldifsni 4757 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
143142ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑥 ≠ 0)
144139nn0zd 12562 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
145138, 143, 144expne0d 14124 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥𝑘) ≠ 0)
146136, 140, 141, 145mulne0d 11837 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐴𝑘) · (𝑥𝑘)) ≠ 0)
147135, 146eqnetrd 2993 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) ≠ 0)
148147adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) ≠ 0)
149 fvoveq1 7413 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((𝐺𝑥)‘(𝑛 + 1)) = ((𝐺𝑥)‘(𝑘 + 1)))
150 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((𝐺𝑥)‘𝑛) = ((𝐺𝑥)‘𝑘))
151149, 150oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → (((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)) = (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)))
152151fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
153152cbvmptv 5214 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) = (𝑘𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
1544reseq2i 5950 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ 𝑍) = ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀))
15522adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑍 ⊆ ℕ0)
156155resmptd 6014 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ 𝑍) = (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
157154, 156eqtr3id 2779 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) = (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
1586adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑀 ∈ ℤ)
1598adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐷𝐿)
160137abscld 15412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℝ)
161160recnd 11209 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℂ)
16210mptex 7200 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V)
16472recnd 11209 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘𝑍) → (𝐷𝑘) ∈ ℂ)
165164adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐷𝑘) ∈ ℂ)
166 eqidd 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) = (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
167152adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) ∧ 𝑛 = 𝑘) → (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
168 fvexd 6876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) ∈ V)
169166, 167, 139, 168fvmptd 6978 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
170117adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
171 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → 𝑛 = (𝑘 + 1))
172171fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝐴𝑛) = (𝐴‘(𝑘 + 1)))
173171oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
174172, 173oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))))
175 1nn0 12465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1 ∈ ℕ0
176175a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → 1 ∈ ℕ0)
177133, 176nn0addcld 12514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℕ0)
178 ovexd 7425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) ∈ V)
179170, 174, 177, 178fvmptd 6978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))))
180121adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = 𝑘) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
181 ovexd 7425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐴𝑘) · (𝑥𝑘)) ∈ V)
182170, 180, 133, 181fvmptd 6978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
183179, 182oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
184113, 183sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
18532adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
186113, 177sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℕ0)
187138, 186expcld 14118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑(𝑘 + 1)) ∈ ℂ)
188185, 136, 187, 140, 141, 145divmuldivd 12006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥𝑘))) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
189139nn0cnd 12512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℂ)
190 1cnd 11176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 1 ∈ ℂ)
191189, 190pncan2d 11542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑘 + 1) − 𝑘) = 1)
192191oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = (𝑥↑1))
193186nn0zd 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℤ)
194138, 143, 144, 193expsubd 14129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = ((𝑥↑(𝑘 + 1)) / (𝑥𝑘)))
195138exp1d 14113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑1) = 𝑥)
196192, 194, 1953eqtr3d 2773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑥↑(𝑘 + 1)) / (𝑥𝑘)) = 𝑥)
197196oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥𝑘))) = (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥))
198184, 188, 1973eqtr2d 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥))
199198fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) = (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥)))
20037adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) ∈ ℂ)
201200, 138absmuld 15430 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥)) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)))
202169, 199, 2013eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)))
20371, 26eqtr3d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘𝑍) → (𝐷𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
204203adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐷𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
205204eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) = (𝐷𝑘))
206205oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)) = ((𝐷𝑘) · (abs‘𝑥)))
207161adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘𝑥) ∈ ℂ)
208165, 207mulcomd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐷𝑘) · (abs‘𝑥)) = ((abs‘𝑥) · (𝐷𝑘)))
209202, 206, 2083eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = ((abs‘𝑥) · (𝐷𝑘)))
2104, 158, 159, 161, 163, 165, 209climmulc2 15610 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
211 climres 15548 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V) → (((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)))
212158, 162, 211sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)))
213210, 212mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿))
214157, 213eqbrtrrd 5134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
215214adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
216 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) · 𝐿) ≠ 1)
217110, 4, 111, 112, 132, 148, 153, 215, 216cvgdvgrat 44309 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
218109, 217sylanl2 681 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
219 eldifi 4097 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ ℝ)
220 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 = 𝑥 → (𝐺𝑟) = (𝐺𝑥))
221220seqeq3d 13981 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 = 𝑥 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑥)))
222221eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = 𝑥 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
223222elrab3 3663 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
224219, 223syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∖ {0}) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
225224ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
226218, 225bitr4d 282 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
227226an32s 652 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∖ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
228105, 227jaodan 959 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0}))) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
22985, 228sylan2br 595 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
230229an32s 652 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23181, 230bitr3d 281 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23268, 231syldan 591 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
233232notbid 318 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (¬ (abs‘𝑥) < (1 / 𝐿) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23457, 233bitrd 279 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
235234biimpd 229 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
236235impancom 451 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ((abs‘𝑥) ≠ (1 / 𝐿) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23751, 236mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
238237ex 412 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
239238con2d 134 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < (abs‘𝑥)))
24046adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) ∈ ℝ)
241 simplr 768 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ∈ ℝ)
24249adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (abs‘𝑥) ∈ ℝ)
243 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < 𝑥)
244241leabsd 15388 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ≤ (abs‘𝑥))
245240, 241, 242, 243, 244ltletrd 11341 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < (abs‘𝑥))
246245ex 412 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < 𝑥 → (1 / 𝐿) < (abs‘𝑥)))
247239, 246nsyld 156 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < 𝑥))
24845, 247sylan2 593 . . . 4 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < 𝑥))
24944, 248mpd 15 . . 3 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → ¬ (1 / 𝐿) < 𝑥)
25042renegcld 11612 . . . . . . . . 9 (𝜑 → -(1 / 𝐿) ∈ ℝ)
251250rexrd 11231 . . . . . . . 8 (𝜑 → -(1 / 𝐿) ∈ ℝ*)
252 iooss1 13348 . . . . . . . 8 ((-(1 / 𝐿) ∈ ℝ* ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
253251, 252sylan 580 . . . . . . 7 ((𝜑 ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
254253adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
255 eliooord 13373 . . . . . . . . . . 11 (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → (𝑥 < 𝑘𝑘 < (1 / 𝐿)))
256255simpld 494 . . . . . . . . . 10 (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → 𝑥 < 𝑘)
257256rgen 3047 . . . . . . . . 9 𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘
258 ioon0 13339 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
25943, 258sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝜑) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
260259ancoms 458 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
261260biimpar 477 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (𝑥(,)(1 / 𝐿)) ≠ ∅)
262 r19.2zb 4462 . . . . . . . . . 10 ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘))
263261, 262sylib 218 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘))
264257, 263mpi 20 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
265264anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
266265adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
267 ssrexv 4019 . . . . . 6 ((𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)) → (∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
268254, 266, 267sylc 65 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
269 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → 𝑥 ∈ ℝ*)
270 xrltnle 11248 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (𝑥 < -(1 / 𝐿) ↔ ¬ -(1 / 𝐿) ≤ 𝑥))
271 xrltle 13116 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (𝑥 < -(1 / 𝐿) → 𝑥 ≤ -(1 / 𝐿)))
272270, 271sylbird 260 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
273251, 272sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝜑) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
274273ancoms 458 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
275274imp 406 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → 𝑥 ≤ -(1 / 𝐿))
276 iooss1 13348 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑥 ≤ -(1 / 𝐿)) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿)))
277269, 275, 276syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿)))
278277sselda 3949 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑘 ∈ (𝑥(,)(1 / 𝐿)))
279278, 256syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 < 𝑘)
280279ralrimiva 3126 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
28140, 77recgt0d 12124 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 / 𝐿))
28242, 42, 281, 281addgt0d 11760 . . . . . . . . . . . 12 (𝜑 → 0 < ((1 / 𝐿) + (1 / 𝐿)))
28342recnd 11209 . . . . . . . . . . . . 13 (𝜑 → (1 / 𝐿) ∈ ℂ)
284283, 283subnegd 11547 . . . . . . . . . . . 12 (𝜑 → ((1 / 𝐿) − -(1 / 𝐿)) = ((1 / 𝐿) + (1 / 𝐿)))
285282, 284breqtrrd 5138 . . . . . . . . . . 11 (𝜑 → 0 < ((1 / 𝐿) − -(1 / 𝐿)))
286250, 42posdifd 11772 . . . . . . . . . . 11 (𝜑 → (-(1 / 𝐿) < (1 / 𝐿) ↔ 0 < ((1 / 𝐿) − -(1 / 𝐿))))
287285, 286mpbird 257 . . . . . . . . . 10 (𝜑 → -(1 / 𝐿) < (1 / 𝐿))
288 ioon0 13339 . . . . . . . . . . 11 ((-(1 / 𝐿) ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿)))
289251, 43, 288syl2anc 584 . . . . . . . . . 10 (𝜑 → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿)))
290287, 289mpbird 257 . . . . . . . . 9 (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅)
291 r19.2zb 4462 . . . . . . . . 9 ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
292290, 291sylib 218 . . . . . . . 8 (𝜑 → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
293292ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
294280, 293mpd 15 . . . . . 6 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
295294adantlrr 721 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
296268, 295pm2.61dan 812 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
297 elioo2 13354 . . . . . . . . . . 11 ((-(1 / 𝐿) ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
298251, 43, 297syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
299298biimpa 476 . . . . . . . . 9 ((𝜑𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)))
300 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
301300, 46absltd 15405 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) ↔ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
30249adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ∈ ℝ)
303 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) < (1 / 𝐿))
304302, 303ltned 11317 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿))
305232biimpd 229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
306305impancom 451 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → ((abs‘𝑥) ≠ (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
307304, 306mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
308307ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
309301, 308sylbird 260 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → ((-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
310309impr 454 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
311310expcom 413 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))) → (𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
3123113impb 1114 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)) → (𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
313312impcom 407 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
314299, 313syldan 591 . . . . . . . 8 ((𝜑𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
315314ex 412 . . . . . . 7 (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
316315ssrdv 3955 . . . . . 6 (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
317 ssrexv 4019 . . . . . 6 ((-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
318316, 317syl 17 . . . . 5 (𝜑 → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
319318adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
320296, 319mpd 15 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘)
3213, 43, 249, 320eqsupd 9415 . 2 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) = (1 / 𝐿))
3221, 321eqtrid 2777 1 (𝜑𝑅 = (1 / 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cmpt 5191   Or wor 5548  dom cdm 5641  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  0cn0 12449  cz 12536  cuz 12800  +crp 12958  (,)cioo 13313  seqcseq 13973  cexp 14033  abscabs 15207  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ioo 13317  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  binomcxplemradcnv  44348
  Copyright terms: Public domain W3C validator