Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  radcnvrat Structured version   Visualization version   GIF version

Theorem radcnvrat 44303
Description: Let 𝐿 be the limit, if one exists, of the ratio (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) (as in the ratio test cvgdvgrat 44302) as 𝑘 increases. Then the radius of convergence of power series Σ𝑛 ∈ ℕ0((𝐴𝑛) · (𝑥𝑛)) is (1 / 𝐿) if 𝐿 is nonzero. Proof "The limit involved in the ratio test..." in https://en.wikipedia.org/wiki/Radius_of_convergence 44302 —a few lines that evidently hide quite an involved process to confirm. (Contributed by Steve Rodriguez, 8-Mar-2020.)
Hypotheses
Ref Expression
radcnvrat.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnvrat.a (𝜑𝐴:ℕ0⟶ℂ)
radcnvrat.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvrat.rat 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
radcnvrat.z 𝑍 = (ℤ𝑀)
radcnvrat.m (𝜑𝑀 ∈ ℕ0)
radcnvrat.n0 ((𝜑𝑘𝑍) → (𝐴𝑘) ≠ 0)
radcnvrat.l (𝜑𝐷𝐿)
radcnvrat.ln0 (𝜑𝐿 ≠ 0)
Assertion
Ref Expression
radcnvrat (𝜑𝑅 = (1 / 𝐿))
Distinct variable groups:   𝑘,𝑛,𝑥,𝜑   𝐴,𝑛,𝑥   𝑘,𝐺,𝑛,𝑥   𝑘,𝑟,𝑥,𝐺   𝑘,𝐿,𝑥   𝑘,𝑍,𝑛   𝐷,𝑘   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘,𝑟)   𝐷(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑘,𝑛,𝑟)   𝐿(𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)   𝑍(𝑥,𝑟)

Proof of Theorem radcnvrat
StepHypRef Expression
1 radcnvrat.r . 2 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
2 xrltso 13101 . . . 4 < Or ℝ*
32a1i 11 . . 3 (𝜑 → < Or ℝ*)
4 radcnvrat.z . . . . . 6 𝑍 = (ℤ𝑀)
5 radcnvrat.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
65nn0zd 12555 . . . . . 6 (𝜑𝑀 ∈ ℤ)
74reseq2i 5947 . . . . . . 7 (𝐷𝑍) = (𝐷 ↾ (ℤ𝑀))
8 radcnvrat.l . . . . . . . 8 (𝜑𝐷𝐿)
9 radcnvrat.rat . . . . . . . . . 10 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
10 nn0ex 12448 . . . . . . . . . . 11 0 ∈ V
1110mptex 7197 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ∈ V
129, 11eqeltri 2824 . . . . . . . . 9 𝐷 ∈ V
13 climres 15541 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐷 ∈ V) → ((𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿𝐷𝐿))
146, 12, 13sylancl 586 . . . . . . . 8 (𝜑 → ((𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿𝐷𝐿))
158, 14mpbird 257 . . . . . . 7 (𝜑 → (𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿)
167, 15eqbrtrid 5142 . . . . . 6 (𝜑 → (𝐷𝑍) ⇝ 𝐿)
179reseq1i 5946 . . . . . . . . 9 (𝐷𝑍) = ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ↾ 𝑍)
18 eluznn0 12876 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
195, 18sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
2019ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℕ0))
2120ssrdv 3952 . . . . . . . . . . 11 (𝜑 → (ℤ𝑀) ⊆ ℕ0)
224, 21eqsstrid 3985 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℕ0)
2322resmptd 6011 . . . . . . . . 9 (𝜑 → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ↾ 𝑍) = (𝑘𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))))
2417, 23eqtrid 2776 . . . . . . . 8 (𝜑 → (𝐷𝑍) = (𝑘𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))))
25 fvexd 6873 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ V)
2624, 25fvmpt2d 6981 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
274peano2uzs 12861 . . . . . . . . . 10 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
2822sselda 3946 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝑘 + 1) ∈ ℕ0)
29 radcnvrat.a . . . . . . . . . . . 12 (𝜑𝐴:ℕ0⟶ℂ)
3029ffvelcdmda 7056 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3128, 30syldan 591 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3227, 31sylan2 593 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3322sselda 3946 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑘 ∈ ℕ0)
3429ffvelcdmda 7056 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3533, 34syldan 591 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴𝑘) ∈ ℂ)
36 radcnvrat.n0 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴𝑘) ≠ 0)
3732, 35, 36divcld 11958 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) ∈ ℂ)
3837abscld 15405 . . . . . . 7 ((𝜑𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ ℝ)
3926, 38eqeltrd 2828 . . . . . 6 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) ∈ ℝ)
404, 6, 16, 39climrecl 15549 . . . . 5 (𝜑𝐿 ∈ ℝ)
41 radcnvrat.ln0 . . . . 5 (𝜑𝐿 ≠ 0)
4240, 41rereccld 12009 . . . 4 (𝜑 → (1 / 𝐿) ∈ ℝ)
4342rexrd 11224 . . 3 (𝜑 → (1 / 𝐿) ∈ ℝ*)
44 simpr 484 . . . 4 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
45 elrabi 3654 . . . . 5 (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → 𝑥 ∈ ℝ)
4642adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (1 / 𝐿) ∈ ℝ)
47 recn 11158 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4847abscld 15405 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
4948adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℝ)
5046, 49ltlend 11319 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
5150simplbda 499 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → (abs‘𝑥) ≠ (1 / 𝐿))
5250adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
53 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿))
5453biantrud 531 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
5546, 49lenltd 11320 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
5655adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
5752, 54, 563bitr2d 307 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
58 1cnd 11169 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℂ)
5949recnd 11202 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℂ)
6040recnd 11202 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ ℂ)
6160adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 𝐿 ∈ ℂ)
6241adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 𝐿 ≠ 0)
6358, 59, 61, 62divmul3d 11992 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) = (abs‘𝑥) ↔ 1 = ((abs‘𝑥) · 𝐿)))
64 eqcom 2736 . . . . . . . . . . . . . . . . 17 ((1 / 𝐿) = (abs‘𝑥) ↔ (abs‘𝑥) = (1 / 𝐿))
65 eqcom 2736 . . . . . . . . . . . . . . . . 17 (1 = ((abs‘𝑥) · 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1)
6663, 64, 653bitr3g 313 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) = (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1))
6766necon3bid 2969 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) ≠ (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) ≠ 1))
6867biimpa 476 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) · 𝐿) ≠ 1)
69 1red 11175 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℝ)
70 fvres 6877 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍 → ((𝐷𝑍)‘𝑘) = (𝐷𝑘))
7170adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) = (𝐷𝑘))
7271, 39eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐷𝑘) ∈ ℝ)
7337absge0d 15413 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
7473, 26breqtrrd 5135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 0 ≤ ((𝐷𝑍)‘𝑘))
7574, 71breqtrd 5133 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 0 ≤ (𝐷𝑘))
764, 6, 8, 72, 75climge0 15550 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝐿)
7740, 76, 41ne0gt0d 11311 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝐿)
7840, 77elrpd 12992 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ ℝ+)
7978adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝐿 ∈ ℝ+)
8049, 69, 79ltmuldivd 13042 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿)))
8180adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿)))
82 elun 4116 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) ↔ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})))
83 inundif 4442 . . . . . . . . . . . . . . . . . . 19 ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) = ℝ
8483eleq2i 2820 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ)
8582, 84bitr3i 277 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ)
86 elin 3930 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℝ ∩ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ∈ {0}))
8786simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∩ {0}) → 𝑥 ∈ {0})
88 elsni 4606 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {0} → 𝑥 = 0)
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∩ {0}) → 𝑥 = 0)
90 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
91 abs0 15251 . . . . . . . . . . . . . . . . . . . . . . . . 25 (abs‘0) = 0
9290, 91eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (abs‘𝑥) = 0)
9392oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → ((abs‘𝑥) · 𝐿) = (0 · 𝐿))
9460mul02d 11372 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0 · 𝐿) = 0)
9593, 94sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 = 0) → ((abs‘𝑥) · 𝐿) = 0)
96 0lt1 11700 . . . . . . . . . . . . . . . . . . . . . 22 0 < 1
9795, 96eqbrtrdi 5146 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = 0) → ((abs‘𝑥) · 𝐿) < 1)
98 radcnvrat.g . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
9998, 29radcnv0 26325 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
100 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
10199, 100syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥 = 0 → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
102101imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = 0) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
10397, 1022thd 265 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 = 0) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
10489, 103sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℝ ∩ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
105104adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∩ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
106 ax-resscn 11125 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ⊆ ℂ
107 ssdif 4107 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ ⊆ ℂ → (ℝ ∖ {0}) ⊆ (ℂ ∖ {0}))
108106, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ ∖ {0}) ⊆ (ℂ ∖ {0})
109108sseli 3942 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0}))
110 nn0uz 12835 . . . . . . . . . . . . . . . . . . . . . 22 0 = (ℤ‘0)
1115ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → 𝑀 ∈ ℕ0)
112 fvexd 6873 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝐺𝑥) ∈ V)
113 eldifi 4094 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
11498a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))))
11510mptex 7197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) ∈ V
116115a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥 ∈ ℂ) → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) ∈ V)
117114, 116fvmpt2d 6981 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
118117adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
119 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
120 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
121119, 120oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
122121adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝑛 = 𝑘) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
123 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
124 ovexd 7422 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ V)
125118, 122, 123, 124fvmptd 6975 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
12634adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
127 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℂ)
128127, 123expcld 14111 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
129126, 128mulcld 11194 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
130125, 129eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
131113, 130sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
132131adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
13333adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → 𝑘 ∈ ℕ0)
134133, 125syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
135113, 134sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
13635adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴𝑘) ∈ ℂ)
137113adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
138137adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑥 ∈ ℂ)
13933adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℕ0)
140138, 139expcld 14111 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥𝑘) ∈ ℂ)
14136adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴𝑘) ≠ 0)
142 eldifsni 4754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
143142ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑥 ≠ 0)
144139nn0zd 12555 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
145138, 143, 144expne0d 14117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥𝑘) ≠ 0)
146136, 140, 141, 145mulne0d 11830 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐴𝑘) · (𝑥𝑘)) ≠ 0)
147135, 146eqnetrd 2992 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) ≠ 0)
148147adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) ≠ 0)
149 fvoveq1 7410 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((𝐺𝑥)‘(𝑛 + 1)) = ((𝐺𝑥)‘(𝑘 + 1)))
150 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((𝐺𝑥)‘𝑛) = ((𝐺𝑥)‘𝑘))
151149, 150oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → (((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)) = (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)))
152151fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
153152cbvmptv 5211 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) = (𝑘𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
1544reseq2i 5947 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ 𝑍) = ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀))
15522adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑍 ⊆ ℕ0)
156155resmptd 6011 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ 𝑍) = (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
157154, 156eqtr3id 2778 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) = (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
1586adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑀 ∈ ℤ)
1598adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐷𝐿)
160137abscld 15405 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℝ)
161160recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℂ)
16210mptex 7197 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V)
16472recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘𝑍) → (𝐷𝑘) ∈ ℂ)
165164adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐷𝑘) ∈ ℂ)
166 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) = (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
167152adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) ∧ 𝑛 = 𝑘) → (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
168 fvexd 6873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) ∈ V)
169166, 167, 139, 168fvmptd 6975 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
170117adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
171 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → 𝑛 = (𝑘 + 1))
172171fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝐴𝑛) = (𝐴‘(𝑘 + 1)))
173171oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
174172, 173oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))))
175 1nn0 12458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1 ∈ ℕ0
176175a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → 1 ∈ ℕ0)
177133, 176nn0addcld 12507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℕ0)
178 ovexd 7422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) ∈ V)
179170, 174, 177, 178fvmptd 6975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))))
180121adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = 𝑘) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
181 ovexd 7422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐴𝑘) · (𝑥𝑘)) ∈ V)
182170, 180, 133, 181fvmptd 6975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
183179, 182oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
184113, 183sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
18532adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
186113, 177sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℕ0)
187138, 186expcld 14111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑(𝑘 + 1)) ∈ ℂ)
188185, 136, 187, 140, 141, 145divmuldivd 11999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥𝑘))) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
189139nn0cnd 12505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℂ)
190 1cnd 11169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 1 ∈ ℂ)
191189, 190pncan2d 11535 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑘 + 1) − 𝑘) = 1)
192191oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = (𝑥↑1))
193186nn0zd 12555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℤ)
194138, 143, 144, 193expsubd 14122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = ((𝑥↑(𝑘 + 1)) / (𝑥𝑘)))
195138exp1d 14106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑1) = 𝑥)
196192, 194, 1953eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑥↑(𝑘 + 1)) / (𝑥𝑘)) = 𝑥)
197196oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥𝑘))) = (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥))
198184, 188, 1973eqtr2d 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥))
199198fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) = (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥)))
20037adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) ∈ ℂ)
201200, 138absmuld 15423 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥)) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)))
202169, 199, 2013eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)))
20371, 26eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘𝑍) → (𝐷𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
204203adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐷𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
205204eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) = (𝐷𝑘))
206205oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)) = ((𝐷𝑘) · (abs‘𝑥)))
207161adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘𝑥) ∈ ℂ)
208165, 207mulcomd 11195 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐷𝑘) · (abs‘𝑥)) = ((abs‘𝑥) · (𝐷𝑘)))
209202, 206, 2083eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = ((abs‘𝑥) · (𝐷𝑘)))
2104, 158, 159, 161, 163, 165, 209climmulc2 15603 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
211 climres 15541 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V) → (((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)))
212158, 162, 211sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)))
213210, 212mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿))
214157, 213eqbrtrrd 5131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
215214adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
216 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) · 𝐿) ≠ 1)
217110, 4, 111, 112, 132, 148, 153, 215, 216cvgdvgrat 44302 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
218109, 217sylanl2 681 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
219 eldifi 4094 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ ℝ)
220 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 = 𝑥 → (𝐺𝑟) = (𝐺𝑥))
221220seqeq3d 13974 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 = 𝑥 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑥)))
222221eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = 𝑥 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
223222elrab3 3660 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
224219, 223syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∖ {0}) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
225224ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
226218, 225bitr4d 282 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
227226an32s 652 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∖ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
228105, 227jaodan 959 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0}))) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
22985, 228sylan2br 595 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
230229an32s 652 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23181, 230bitr3d 281 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23268, 231syldan 591 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
233232notbid 318 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (¬ (abs‘𝑥) < (1 / 𝐿) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23457, 233bitrd 279 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
235234biimpd 229 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
236235impancom 451 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ((abs‘𝑥) ≠ (1 / 𝐿) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23751, 236mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
238237ex 412 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
239238con2d 134 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < (abs‘𝑥)))
24046adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) ∈ ℝ)
241 simplr 768 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ∈ ℝ)
24249adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (abs‘𝑥) ∈ ℝ)
243 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < 𝑥)
244241leabsd 15381 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ≤ (abs‘𝑥))
245240, 241, 242, 243, 244ltletrd 11334 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < (abs‘𝑥))
246245ex 412 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < 𝑥 → (1 / 𝐿) < (abs‘𝑥)))
247239, 246nsyld 156 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < 𝑥))
24845, 247sylan2 593 . . . 4 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < 𝑥))
24944, 248mpd 15 . . 3 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → ¬ (1 / 𝐿) < 𝑥)
25042renegcld 11605 . . . . . . . . 9 (𝜑 → -(1 / 𝐿) ∈ ℝ)
251250rexrd 11224 . . . . . . . 8 (𝜑 → -(1 / 𝐿) ∈ ℝ*)
252 iooss1 13341 . . . . . . . 8 ((-(1 / 𝐿) ∈ ℝ* ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
253251, 252sylan 580 . . . . . . 7 ((𝜑 ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
254253adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
255 eliooord 13366 . . . . . . . . . . 11 (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → (𝑥 < 𝑘𝑘 < (1 / 𝐿)))
256255simpld 494 . . . . . . . . . 10 (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → 𝑥 < 𝑘)
257256rgen 3046 . . . . . . . . 9 𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘
258 ioon0 13332 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
25943, 258sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝜑) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
260259ancoms 458 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
261260biimpar 477 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (𝑥(,)(1 / 𝐿)) ≠ ∅)
262 r19.2zb 4459 . . . . . . . . . 10 ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘))
263261, 262sylib 218 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘))
264257, 263mpi 20 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
265264anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
266265adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
267 ssrexv 4016 . . . . . 6 ((𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)) → (∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
268254, 266, 267sylc 65 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
269 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → 𝑥 ∈ ℝ*)
270 xrltnle 11241 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (𝑥 < -(1 / 𝐿) ↔ ¬ -(1 / 𝐿) ≤ 𝑥))
271 xrltle 13109 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (𝑥 < -(1 / 𝐿) → 𝑥 ≤ -(1 / 𝐿)))
272270, 271sylbird 260 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
273251, 272sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝜑) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
274273ancoms 458 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
275274imp 406 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → 𝑥 ≤ -(1 / 𝐿))
276 iooss1 13341 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑥 ≤ -(1 / 𝐿)) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿)))
277269, 275, 276syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿)))
278277sselda 3946 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑘 ∈ (𝑥(,)(1 / 𝐿)))
279278, 256syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 < 𝑘)
280279ralrimiva 3125 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
28140, 77recgt0d 12117 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 / 𝐿))
28242, 42, 281, 281addgt0d 11753 . . . . . . . . . . . 12 (𝜑 → 0 < ((1 / 𝐿) + (1 / 𝐿)))
28342recnd 11202 . . . . . . . . . . . . 13 (𝜑 → (1 / 𝐿) ∈ ℂ)
284283, 283subnegd 11540 . . . . . . . . . . . 12 (𝜑 → ((1 / 𝐿) − -(1 / 𝐿)) = ((1 / 𝐿) + (1 / 𝐿)))
285282, 284breqtrrd 5135 . . . . . . . . . . 11 (𝜑 → 0 < ((1 / 𝐿) − -(1 / 𝐿)))
286250, 42posdifd 11765 . . . . . . . . . . 11 (𝜑 → (-(1 / 𝐿) < (1 / 𝐿) ↔ 0 < ((1 / 𝐿) − -(1 / 𝐿))))
287285, 286mpbird 257 . . . . . . . . . 10 (𝜑 → -(1 / 𝐿) < (1 / 𝐿))
288 ioon0 13332 . . . . . . . . . . 11 ((-(1 / 𝐿) ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿)))
289251, 43, 288syl2anc 584 . . . . . . . . . 10 (𝜑 → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿)))
290287, 289mpbird 257 . . . . . . . . 9 (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅)
291 r19.2zb 4459 . . . . . . . . 9 ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
292290, 291sylib 218 . . . . . . . 8 (𝜑 → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
293292ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
294280, 293mpd 15 . . . . . 6 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
295294adantlrr 721 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
296268, 295pm2.61dan 812 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
297 elioo2 13347 . . . . . . . . . . 11 ((-(1 / 𝐿) ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
298251, 43, 297syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
299298biimpa 476 . . . . . . . . 9 ((𝜑𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)))
300 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
301300, 46absltd 15398 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) ↔ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
30249adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ∈ ℝ)
303 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) < (1 / 𝐿))
304302, 303ltned 11310 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿))
305232biimpd 229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
306305impancom 451 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → ((abs‘𝑥) ≠ (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
307304, 306mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
308307ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
309301, 308sylbird 260 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → ((-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
310309impr 454 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
311310expcom 413 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))) → (𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
3123113impb 1114 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)) → (𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
313312impcom 407 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
314299, 313syldan 591 . . . . . . . 8 ((𝜑𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
315314ex 412 . . . . . . 7 (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
316315ssrdv 3952 . . . . . 6 (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
317 ssrexv 4016 . . . . . 6 ((-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
318316, 317syl 17 . . . . 5 (𝜑 → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
319318adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
320296, 319mpd 15 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘)
3213, 43, 249, 320eqsupd 9408 . 2 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) = (1 / 𝐿))
3221, 321eqtrid 2776 1 (𝜑𝑅 = (1 / 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  cmpt 5188   Or wor 5545  dom cdm 5638  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  0cn0 12442  cz 12529  cuz 12793  +crp 12951  (,)cioo 13306  seqcseq 13966  cexp 14026  abscabs 15200  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ioo 13310  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653
This theorem is referenced by:  binomcxplemradcnv  44341
  Copyright terms: Public domain W3C validator