Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  radcnvrat Structured version   Visualization version   GIF version

Theorem radcnvrat 41939
Description: Let 𝐿 be the limit, if one exists, of the ratio (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) (as in the ratio test cvgdvgrat 41938) as 𝑘 increases. Then the radius of convergence of power series Σ𝑛 ∈ ℕ0((𝐴𝑛) · (𝑥𝑛)) is (1 / 𝐿) if 𝐿 is nonzero. Proof "The limit involved in the ratio test..." in https://en.wikipedia.org/wiki/Radius_of_convergence 41938 —a few lines that evidently hide quite an involved process to confirm. (Contributed by Steve Rodriguez, 8-Mar-2020.)
Hypotheses
Ref Expression
radcnvrat.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnvrat.a (𝜑𝐴:ℕ0⟶ℂ)
radcnvrat.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvrat.rat 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
radcnvrat.z 𝑍 = (ℤ𝑀)
radcnvrat.m (𝜑𝑀 ∈ ℕ0)
radcnvrat.n0 ((𝜑𝑘𝑍) → (𝐴𝑘) ≠ 0)
radcnvrat.l (𝜑𝐷𝐿)
radcnvrat.ln0 (𝜑𝐿 ≠ 0)
Assertion
Ref Expression
radcnvrat (𝜑𝑅 = (1 / 𝐿))
Distinct variable groups:   𝑘,𝑛,𝑥,𝜑   𝐴,𝑛,𝑥   𝑘,𝐺,𝑛,𝑥   𝑘,𝑟,𝑥,𝐺   𝑘,𝐿,𝑥   𝑘,𝑍,𝑛   𝐷,𝑘   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘,𝑟)   𝐷(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑘,𝑛,𝑟)   𝐿(𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)   𝑍(𝑥,𝑟)

Proof of Theorem radcnvrat
StepHypRef Expression
1 radcnvrat.r . 2 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
2 xrltso 12884 . . . 4 < Or ℝ*
32a1i 11 . . 3 (𝜑 → < Or ℝ*)
4 radcnvrat.z . . . . . 6 𝑍 = (ℤ𝑀)
5 radcnvrat.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
65nn0zd 12433 . . . . . 6 (𝜑𝑀 ∈ ℤ)
74reseq2i 5891 . . . . . . 7 (𝐷𝑍) = (𝐷 ↾ (ℤ𝑀))
8 radcnvrat.l . . . . . . . 8 (𝜑𝐷𝐿)
9 radcnvrat.rat . . . . . . . . . 10 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
10 nn0ex 12248 . . . . . . . . . . 11 0 ∈ V
1110mptex 7108 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ∈ V
129, 11eqeltri 2836 . . . . . . . . 9 𝐷 ∈ V
13 climres 15293 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐷 ∈ V) → ((𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿𝐷𝐿))
146, 12, 13sylancl 586 . . . . . . . 8 (𝜑 → ((𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿𝐷𝐿))
158, 14mpbird 256 . . . . . . 7 (𝜑 → (𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿)
167, 15eqbrtrid 5110 . . . . . 6 (𝜑 → (𝐷𝑍) ⇝ 𝐿)
179reseq1i 5890 . . . . . . . . 9 (𝐷𝑍) = ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ↾ 𝑍)
18 eluznn0 12666 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
195, 18sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
2019ex 413 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℕ0))
2120ssrdv 3928 . . . . . . . . . . 11 (𝜑 → (ℤ𝑀) ⊆ ℕ0)
224, 21eqsstrid 3970 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℕ0)
2322resmptd 5951 . . . . . . . . 9 (𝜑 → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ↾ 𝑍) = (𝑘𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))))
2417, 23eqtrid 2791 . . . . . . . 8 (𝜑 → (𝐷𝑍) = (𝑘𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))))
25 fvexd 6798 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ V)
2624, 25fvmpt2d 6897 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
274peano2uzs 12651 . . . . . . . . . 10 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
2822sselda 3922 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝑘 + 1) ∈ ℕ0)
29 radcnvrat.a . . . . . . . . . . . 12 (𝜑𝐴:ℕ0⟶ℂ)
3029ffvelrnda 6970 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3128, 30syldan 591 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3227, 31sylan2 593 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3322sselda 3922 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑘 ∈ ℕ0)
3429ffvelrnda 6970 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3533, 34syldan 591 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴𝑘) ∈ ℂ)
36 radcnvrat.n0 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴𝑘) ≠ 0)
3732, 35, 36divcld 11760 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) ∈ ℂ)
3837abscld 15157 . . . . . . 7 ((𝜑𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ ℝ)
3926, 38eqeltrd 2840 . . . . . 6 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) ∈ ℝ)
404, 6, 16, 39climrecl 15301 . . . . 5 (𝜑𝐿 ∈ ℝ)
41 radcnvrat.ln0 . . . . 5 (𝜑𝐿 ≠ 0)
4240, 41rereccld 11811 . . . 4 (𝜑 → (1 / 𝐿) ∈ ℝ)
4342rexrd 11034 . . 3 (𝜑 → (1 / 𝐿) ∈ ℝ*)
44 simpr 485 . . . 4 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
45 elrabi 3619 . . . . 5 (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → 𝑥 ∈ ℝ)
4642adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (1 / 𝐿) ∈ ℝ)
47 recn 10970 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4847abscld 15157 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
4948adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℝ)
5046, 49ltlend 11129 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
5150simplbda 500 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → (abs‘𝑥) ≠ (1 / 𝐿))
5250adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
53 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿))
5453biantrud 532 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
5546, 49lenltd 11130 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
5655adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
5752, 54, 563bitr2d 307 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
58 1cnd 10979 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℂ)
5949recnd 11012 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℂ)
6040recnd 11012 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ ℂ)
6160adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 𝐿 ∈ ℂ)
6241adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 𝐿 ≠ 0)
6358, 59, 61, 62divmul3d 11794 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) = (abs‘𝑥) ↔ 1 = ((abs‘𝑥) · 𝐿)))
64 eqcom 2746 . . . . . . . . . . . . . . . . 17 ((1 / 𝐿) = (abs‘𝑥) ↔ (abs‘𝑥) = (1 / 𝐿))
65 eqcom 2746 . . . . . . . . . . . . . . . . 17 (1 = ((abs‘𝑥) · 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1)
6663, 64, 653bitr3g 313 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) = (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1))
6766necon3bid 2989 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) ≠ (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) ≠ 1))
6867biimpa 477 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) · 𝐿) ≠ 1)
69 1red 10985 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℝ)
70 fvres 6802 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍 → ((𝐷𝑍)‘𝑘) = (𝐷𝑘))
7170adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) = (𝐷𝑘))
7271, 39eqeltrrd 2841 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐷𝑘) ∈ ℝ)
7337absge0d 15165 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
7473, 26breqtrrd 5103 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 0 ≤ ((𝐷𝑍)‘𝑘))
7574, 71breqtrd 5101 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 0 ≤ (𝐷𝑘))
764, 6, 8, 72, 75climge0 15302 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝐿)
7740, 76, 41ne0gt0d 11121 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝐿)
7840, 77elrpd 12778 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ ℝ+)
7978adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝐿 ∈ ℝ+)
8049, 69, 79ltmuldivd 12828 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿)))
8180adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿)))
82 elun 4084 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) ↔ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})))
83 inundif 4413 . . . . . . . . . . . . . . . . . . 19 ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) = ℝ
8483eleq2i 2831 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ)
8582, 84bitr3i 276 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ)
86 elin 3904 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℝ ∩ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ∈ {0}))
8786simprbi 497 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∩ {0}) → 𝑥 ∈ {0})
88 elsni 4579 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {0} → 𝑥 = 0)
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∩ {0}) → 𝑥 = 0)
90 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
91 abs0 15006 . . . . . . . . . . . . . . . . . . . . . . . . 25 (abs‘0) = 0
9290, 91eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (abs‘𝑥) = 0)
9392oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → ((abs‘𝑥) · 𝐿) = (0 · 𝐿))
9460mul02d 11182 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0 · 𝐿) = 0)
9593, 94sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 = 0) → ((abs‘𝑥) · 𝐿) = 0)
96 0lt1 11506 . . . . . . . . . . . . . . . . . . . . . 22 0 < 1
9795, 96eqbrtrdi 5114 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = 0) → ((abs‘𝑥) · 𝐿) < 1)
98 radcnvrat.g . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
9998, 29radcnv0 25584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
100 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
10199, 100syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥 = 0 → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
102101imp 407 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = 0) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
10397, 1022thd 264 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 = 0) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
10489, 103sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℝ ∩ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
105104adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∩ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
106 ax-resscn 10937 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ⊆ ℂ
107 ssdif 4075 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ ⊆ ℂ → (ℝ ∖ {0}) ⊆ (ℂ ∖ {0}))
108106, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ ∖ {0}) ⊆ (ℂ ∖ {0})
109108sseli 3918 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0}))
110 nn0uz 12629 . . . . . . . . . . . . . . . . . . . . . 22 0 = (ℤ‘0)
1115ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → 𝑀 ∈ ℕ0)
112 fvexd 6798 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝐺𝑥) ∈ V)
113 eldifi 4062 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
11498a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))))
11510mptex 7108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) ∈ V
116115a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥 ∈ ℂ) → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) ∈ V)
117114, 116fvmpt2d 6897 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
118117adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
119 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
120 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
121119, 120oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
122121adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝑛 = 𝑘) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
123 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
124 ovexd 7319 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ V)
125118, 122, 123, 124fvmptd 6891 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
12634adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
127 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℂ)
128127, 123expcld 13873 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
129126, 128mulcld 11004 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
130125, 129eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
131113, 130sylanl2 678 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
132131adantlr 712 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
13333adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → 𝑘 ∈ ℕ0)
134133, 125syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
135113, 134sylanl2 678 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
13635adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴𝑘) ∈ ℂ)
137113adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
138137adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑥 ∈ ℂ)
13933adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℕ0)
140138, 139expcld 13873 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥𝑘) ∈ ℂ)
14136adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴𝑘) ≠ 0)
142 eldifsni 4724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
143142ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑥 ≠ 0)
144139nn0zd 12433 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
145138, 143, 144expne0d 13879 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥𝑘) ≠ 0)
146136, 140, 141, 145mulne0d 11636 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐴𝑘) · (𝑥𝑘)) ≠ 0)
147135, 146eqnetrd 3012 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) ≠ 0)
148147adantlr 712 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) ≠ 0)
149 fvoveq1 7307 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((𝐺𝑥)‘(𝑛 + 1)) = ((𝐺𝑥)‘(𝑘 + 1)))
150 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((𝐺𝑥)‘𝑛) = ((𝐺𝑥)‘𝑘))
151149, 150oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → (((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)) = (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)))
152151fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
153152cbvmptv 5188 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) = (𝑘𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
1544reseq2i 5891 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ 𝑍) = ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀))
15522adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑍 ⊆ ℕ0)
156155resmptd 5951 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ 𝑍) = (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
157154, 156eqtr3id 2793 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) = (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
1586adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑀 ∈ ℤ)
1598adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐷𝐿)
160137abscld 15157 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℝ)
161160recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℂ)
16210mptex 7108 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V)
16472recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘𝑍) → (𝐷𝑘) ∈ ℂ)
165164adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐷𝑘) ∈ ℂ)
166 eqidd 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) = (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
167152adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) ∧ 𝑛 = 𝑘) → (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
168 fvexd 6798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) ∈ V)
169166, 167, 139, 168fvmptd 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
170117adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
171 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → 𝑛 = (𝑘 + 1))
172171fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝐴𝑛) = (𝐴‘(𝑘 + 1)))
173171oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
174172, 173oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))))
175 1nn0 12258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1 ∈ ℕ0
176175a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → 1 ∈ ℕ0)
177133, 176nn0addcld 12306 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℕ0)
178 ovexd 7319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) ∈ V)
179170, 174, 177, 178fvmptd 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))))
180121adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = 𝑘) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
181 ovexd 7319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐴𝑘) · (𝑥𝑘)) ∈ V)
182170, 180, 133, 181fvmptd 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
183179, 182oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
184113, 183sylanl2 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
18532adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
186113, 177sylanl2 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℕ0)
187138, 186expcld 13873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑(𝑘 + 1)) ∈ ℂ)
188185, 136, 187, 140, 141, 145divmuldivd 11801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥𝑘))) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
189139nn0cnd 12304 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℂ)
190 1cnd 10979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 1 ∈ ℂ)
191189, 190pncan2d 11343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑘 + 1) − 𝑘) = 1)
192191oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = (𝑥↑1))
193186nn0zd 12433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℤ)
194138, 143, 144, 193expsubd 13884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = ((𝑥↑(𝑘 + 1)) / (𝑥𝑘)))
195138exp1d 13868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑1) = 𝑥)
196192, 194, 1953eqtr3d 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑥↑(𝑘 + 1)) / (𝑥𝑘)) = 𝑥)
197196oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥𝑘))) = (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥))
198184, 188, 1973eqtr2d 2785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥))
199198fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) = (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥)))
20037adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) ∈ ℂ)
201200, 138absmuld 15175 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥)) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)))
202169, 199, 2013eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)))
20371, 26eqtr3d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘𝑍) → (𝐷𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
204203adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐷𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
205204eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) = (𝐷𝑘))
206205oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)) = ((𝐷𝑘) · (abs‘𝑥)))
207161adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘𝑥) ∈ ℂ)
208165, 207mulcomd 11005 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐷𝑘) · (abs‘𝑥)) = ((abs‘𝑥) · (𝐷𝑘)))
209202, 206, 2083eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = ((abs‘𝑥) · (𝐷𝑘)))
2104, 158, 159, 161, 163, 165, 209climmulc2 15355 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
211 climres 15293 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V) → (((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)))
212158, 162, 211sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)))
213210, 212mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿))
214157, 213eqbrtrrd 5099 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
215214adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
216 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) · 𝐿) ≠ 1)
217110, 4, 111, 112, 132, 148, 153, 215, 216cvgdvgrat 41938 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
218109, 217sylanl2 678 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
219 eldifi 4062 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ ℝ)
220 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 = 𝑥 → (𝐺𝑟) = (𝐺𝑥))
221220seqeq3d 13738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 = 𝑥 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑥)))
222221eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = 𝑥 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
223222elrab3 3626 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
224219, 223syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∖ {0}) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
225224ad2antlr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
226218, 225bitr4d 281 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
227226an32s 649 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∖ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
228105, 227jaodan 955 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0}))) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
22985, 228sylan2br 595 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
230229an32s 649 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23181, 230bitr3d 280 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23268, 231syldan 591 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
233232notbid 318 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (¬ (abs‘𝑥) < (1 / 𝐿) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23457, 233bitrd 278 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
235234biimpd 228 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
236235impancom 452 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ((abs‘𝑥) ≠ (1 / 𝐿) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23751, 236mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
238237ex 413 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
239238con2d 134 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < (abs‘𝑥)))
24046adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) ∈ ℝ)
241 simplr 766 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ∈ ℝ)
24249adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (abs‘𝑥) ∈ ℝ)
243 simpr 485 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < 𝑥)
244241leabsd 15135 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ≤ (abs‘𝑥))
245240, 241, 242, 243, 244ltletrd 11144 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < (abs‘𝑥))
246245ex 413 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < 𝑥 → (1 / 𝐿) < (abs‘𝑥)))
247239, 246nsyld 156 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < 𝑥))
24845, 247sylan2 593 . . . 4 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < 𝑥))
24944, 248mpd 15 . . 3 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → ¬ (1 / 𝐿) < 𝑥)
25042renegcld 11411 . . . . . . . . 9 (𝜑 → -(1 / 𝐿) ∈ ℝ)
251250rexrd 11034 . . . . . . . 8 (𝜑 → -(1 / 𝐿) ∈ ℝ*)
252 iooss1 13123 . . . . . . . 8 ((-(1 / 𝐿) ∈ ℝ* ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
253251, 252sylan 580 . . . . . . 7 ((𝜑 ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
254253adantlr 712 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
255 eliooord 13147 . . . . . . . . . . 11 (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → (𝑥 < 𝑘𝑘 < (1 / 𝐿)))
256255simpld 495 . . . . . . . . . 10 (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → 𝑥 < 𝑘)
257256rgen 3075 . . . . . . . . 9 𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘
258 ioon0 13114 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
25943, 258sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝜑) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
260259ancoms 459 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
261260biimpar 478 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (𝑥(,)(1 / 𝐿)) ≠ ∅)
262 r19.2zb 4427 . . . . . . . . . 10 ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘))
263261, 262sylib 217 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘))
264257, 263mpi 20 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
265264anasss 467 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
266265adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
267 ssrexv 3989 . . . . . 6 ((𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)) → (∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
268254, 266, 267sylc 65 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
269 simplr 766 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → 𝑥 ∈ ℝ*)
270 xrltnle 11051 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (𝑥 < -(1 / 𝐿) ↔ ¬ -(1 / 𝐿) ≤ 𝑥))
271 xrltle 12892 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (𝑥 < -(1 / 𝐿) → 𝑥 ≤ -(1 / 𝐿)))
272270, 271sylbird 259 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
273251, 272sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝜑) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
274273ancoms 459 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
275274imp 407 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → 𝑥 ≤ -(1 / 𝐿))
276 iooss1 13123 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑥 ≤ -(1 / 𝐿)) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿)))
277269, 275, 276syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿)))
278277sselda 3922 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑘 ∈ (𝑥(,)(1 / 𝐿)))
279278, 256syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 < 𝑘)
280279ralrimiva 3104 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
28140, 77recgt0d 11918 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 / 𝐿))
28242, 42, 281, 281addgt0d 11559 . . . . . . . . . . . 12 (𝜑 → 0 < ((1 / 𝐿) + (1 / 𝐿)))
28342recnd 11012 . . . . . . . . . . . . 13 (𝜑 → (1 / 𝐿) ∈ ℂ)
284283, 283subnegd 11348 . . . . . . . . . . . 12 (𝜑 → ((1 / 𝐿) − -(1 / 𝐿)) = ((1 / 𝐿) + (1 / 𝐿)))
285282, 284breqtrrd 5103 . . . . . . . . . . 11 (𝜑 → 0 < ((1 / 𝐿) − -(1 / 𝐿)))
286250, 42posdifd 11571 . . . . . . . . . . 11 (𝜑 → (-(1 / 𝐿) < (1 / 𝐿) ↔ 0 < ((1 / 𝐿) − -(1 / 𝐿))))
287285, 286mpbird 256 . . . . . . . . . 10 (𝜑 → -(1 / 𝐿) < (1 / 𝐿))
288 ioon0 13114 . . . . . . . . . . 11 ((-(1 / 𝐿) ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿)))
289251, 43, 288syl2anc 584 . . . . . . . . . 10 (𝜑 → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿)))
290287, 289mpbird 256 . . . . . . . . 9 (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅)
291 r19.2zb 4427 . . . . . . . . 9 ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
292290, 291sylib 217 . . . . . . . 8 (𝜑 → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
293292ad2antrr 723 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
294280, 293mpd 15 . . . . . 6 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
295294adantlrr 718 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
296268, 295pm2.61dan 810 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
297 elioo2 13129 . . . . . . . . . . 11 ((-(1 / 𝐿) ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
298251, 43, 297syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
299298biimpa 477 . . . . . . . . 9 ((𝜑𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)))
300 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
301300, 46absltd 15150 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) ↔ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
30249adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ∈ ℝ)
303 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) < (1 / 𝐿))
304302, 303ltned 11120 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿))
305232biimpd 228 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
306305impancom 452 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → ((abs‘𝑥) ≠ (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
307304, 306mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
308307ex 413 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
309301, 308sylbird 259 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → ((-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
310309impr 455 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
311310expcom 414 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))) → (𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
3123113impb 1114 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)) → (𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
313312impcom 408 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
314299, 313syldan 591 . . . . . . . 8 ((𝜑𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
315314ex 413 . . . . . . 7 (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
316315ssrdv 3928 . . . . . 6 (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
317 ssrexv 3989 . . . . . 6 ((-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
318316, 317syl 17 . . . . 5 (𝜑 → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
319318adantr 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
320296, 319mpd 15 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘)
3213, 43, 249, 320eqsupd 9225 . 2 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) = (1 / 𝐿))
3221, 321eqtrid 2791 1 (𝜑𝑅 = (1 / 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  {crab 3069  Vcvv 3433  cdif 3885  cun 3886  cin 3887  wss 3888  c0 4257  {csn 4562   class class class wbr 5075  cmpt 5158   Or wor 5503  dom cdm 5590  cres 5592  wf 6433  cfv 6437  (class class class)co 7284  supcsup 9208  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  *cxr 11017   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  0cn0 12242  cz 12328  cuz 12591  +crp 12739  (,)cioo 13088  seqcseq 13730  cexp 13791  abscabs 14954  cli 15202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-pm 8627  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-z 12329  df-uz 12592  df-q 12698  df-rp 12740  df-ioo 13092  df-ico 13094  df-fz 13249  df-fzo 13392  df-fl 13521  df-seq 13731  df-exp 13792  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407
This theorem is referenced by:  binomcxplemradcnv  41977
  Copyright terms: Public domain W3C validator