![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyli | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
nsyli.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
nsyli.2 | ⊢ (𝜃 → ¬ 𝜒) |
Ref | Expression |
---|---|
nsyli | ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyli.2 | . 2 ⊢ (𝜃 → ¬ 𝜒) | |
2 | nsyli.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: necon3ad 2959 tz7.7 6421 onssneli 6511 tz7.48-2 8498 tz7.49 8501 php 9273 phpOLD 9285 nndomogOLD 9289 elirrv 9665 setind 9803 zorn2lem3 10567 alephval2 10641 inar1 10844 sltres 27725 dfon2lem6 35752 finminlem 36284 onint1 36415 poimirlem4 37584 ordnexbtwnsuc 43229 gneispace 44096 |
Copyright terms: Public domain | W3C validator |