![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyli | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
nsyli.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
nsyli.2 | ⊢ (𝜃 → ¬ 𝜒) |
Ref | Expression |
---|---|
nsyli | ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyli.2 | . 2 ⊢ (𝜃 → ¬ 𝜒) | |
2 | nsyli.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: necon3ad 2945 tz7.7 6380 onssneli 6470 tz7.48-2 8437 tz7.49 8440 php 9206 phpOLD 9218 nndomogOLD 9222 elirrv 9587 setind 9725 zorn2lem3 10489 alephval2 10563 inar1 10766 sltres 27511 dfon2lem6 35255 finminlem 35693 onint1 35824 poimirlem4 36982 ordnexbtwnsuc 42506 gneispace 43374 |
Copyright terms: Public domain | W3C validator |