![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyli | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
nsyli.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
nsyli.2 | ⊢ (𝜃 → ¬ 𝜒) |
Ref | Expression |
---|---|
nsyli | ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyli.2 | . 2 ⊢ (𝜃 → ¬ 𝜒) | |
2 | nsyli.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: necon3ad 2954 tz7.7 6391 onssneli 6481 tz7.48-2 8442 tz7.49 8445 php 9210 phpOLD 9222 nndomogOLD 9226 elirrv 9591 setind 9729 zorn2lem3 10493 alephval2 10567 inar1 10770 sltres 27165 dfon2lem6 34760 finminlem 35203 onint1 35334 poimirlem4 36492 ordnexbtwnsuc 42017 gneispace 42885 |
Copyright terms: Public domain | W3C validator |