Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsyli | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
nsyli.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
nsyli.2 | ⊢ (𝜃 → ¬ 𝜒) |
Ref | Expression |
---|---|
nsyli | ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyli.2 | . 2 ⊢ (𝜃 → ¬ 𝜒) | |
2 | nsyli.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: necon3ad 2955 tz7.7 6277 onssneli 6361 tz7.48-2 8243 tz7.49 8246 php 8897 nndomog 8904 elirrv 9285 setind 9423 zorn2lem3 10185 alephval2 10259 inar1 10462 dfon2lem6 33670 sltres 33792 finminlem 34434 onint1 34565 poimirlem4 35708 gneispace 41633 |
Copyright terms: Public domain | W3C validator |