MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyli Structured version   Visualization version   GIF version

Theorem nsyli 157
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.)
Hypotheses
Ref Expression
nsyli.1 (𝜑 → (𝜓𝜒))
nsyli.2 (𝜃 → ¬ 𝜒)
Assertion
Ref Expression
nsyli (𝜑 → (𝜃 → ¬ 𝜓))

Proof of Theorem nsyli
StepHypRef Expression
1 nsyli.2 . 2 (𝜃 → ¬ 𝜒)
2 nsyli.1 . . 3 (𝜑 → (𝜓𝜒))
32con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
41, 3syl5 34 1 (𝜑 → (𝜃 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  necon3ad  2946  tz7.7  6383  onssneli  6475  tz7.48-2  8461  tz7.49  8464  php  9226  phpOLD  9236  nndomogOLD  9240  elirrv  9615  setind  9753  zorn2lem3  10517  alephval2  10591  inar1  10794  sltres  27631  dfon2lem6  35811  finminlem  36341  onint1  36472  poimirlem4  37653  ordnexbtwnsuc  43258  gneispace  44125
  Copyright terms: Public domain W3C validator