MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyli Structured version   Visualization version   GIF version

Theorem nsyli 157
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.)
Hypotheses
Ref Expression
nsyli.1 (𝜑 → (𝜓𝜒))
nsyli.2 (𝜃 → ¬ 𝜒)
Assertion
Ref Expression
nsyli (𝜑 → (𝜃 → ¬ 𝜓))

Proof of Theorem nsyli
StepHypRef Expression
1 nsyli.2 . 2 (𝜃 → ¬ 𝜒)
2 nsyli.1 . . 3 (𝜑 → (𝜓𝜒))
32con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
41, 3syl5 34 1 (𝜑 → (𝜃 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  necon3ad  2938  tz7.7  6358  onssneli  6450  tz7.48-2  8410  tz7.49  8413  php  9171  elirrv  9549  setind  9687  zorn2lem3  10451  alephval2  10525  inar1  10728  sltres  27574  dfon2lem6  35776  finminlem  36306  onint1  36437  poimirlem4  37618  ordnexbtwnsuc  43256  gneispace  44123
  Copyright terms: Public domain W3C validator