MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyli Structured version   Visualization version   GIF version

Theorem nsyli 157
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.)
Hypotheses
Ref Expression
nsyli.1 (𝜑 → (𝜓𝜒))
nsyli.2 (𝜃 → ¬ 𝜒)
Assertion
Ref Expression
nsyli (𝜑 → (𝜃 → ¬ 𝜓))

Proof of Theorem nsyli
StepHypRef Expression
1 nsyli.2 . 2 (𝜃 → ¬ 𝜒)
2 nsyli.1 . . 3 (𝜑 → (𝜓𝜒))
32con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
41, 3syl5 34 1 (𝜑 → (𝜃 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  necon3ad  2945  tz7.7  6380  onssneli  6470  tz7.48-2  8437  tz7.49  8440  php  9206  phpOLD  9218  nndomogOLD  9222  elirrv  9587  setind  9725  zorn2lem3  10489  alephval2  10563  inar1  10766  sltres  27511  dfon2lem6  35255  finminlem  35693  onint1  35824  poimirlem4  36982  ordnexbtwnsuc  42506  gneispace  43374
  Copyright terms: Public domain W3C validator