MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyli Structured version   Visualization version   GIF version

Theorem nsyli 157
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.)
Hypotheses
Ref Expression
nsyli.1 (𝜑 → (𝜓𝜒))
nsyli.2 (𝜃 → ¬ 𝜒)
Assertion
Ref Expression
nsyli (𝜑 → (𝜃 → ¬ 𝜓))

Proof of Theorem nsyli
StepHypRef Expression
1 nsyli.2 . 2 (𝜃 → ¬ 𝜒)
2 nsyli.1 . . 3 (𝜑 → (𝜓𝜒))
32con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
41, 3syl5 34 1 (𝜑 → (𝜃 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  necon3ad  2959  tz7.7  6421  onssneli  6511  tz7.48-2  8498  tz7.49  8501  php  9273  phpOLD  9285  nndomogOLD  9289  elirrv  9665  setind  9803  zorn2lem3  10567  alephval2  10641  inar1  10844  sltres  27725  dfon2lem6  35752  finminlem  36284  onint1  36415  poimirlem4  37584  ordnexbtwnsuc  43229  gneispace  44096
  Copyright terms: Public domain W3C validator