MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyli Structured version   Visualization version   GIF version

Theorem nsyli 157
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.)
Hypotheses
Ref Expression
nsyli.1 (𝜑 → (𝜓𝜒))
nsyli.2 (𝜃 → ¬ 𝜒)
Assertion
Ref Expression
nsyli (𝜑 → (𝜃 → ¬ 𝜓))

Proof of Theorem nsyli
StepHypRef Expression
1 nsyli.2 . 2 (𝜃 → ¬ 𝜒)
2 nsyli.1 . . 3 (𝜑 → (𝜓𝜒))
32con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
41, 3syl5 34 1 (𝜑 → (𝜃 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  necon3ad  2938  tz7.7  6346  onssneli  6438  tz7.48-2  8387  tz7.49  8390  php  9148  elirrv  9525  setind  9663  zorn2lem3  10427  alephval2  10501  inar1  10704  sltres  27607  dfon2lem6  35769  finminlem  36299  onint1  36430  poimirlem4  37611  ordnexbtwnsuc  43249  gneispace  44116
  Copyright terms: Public domain W3C validator