| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyli | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| nsyli.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| nsyli.2 | ⊢ (𝜃 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| nsyli | ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyli.2 | . 2 ⊢ (𝜃 → ¬ 𝜒) | |
| 2 | nsyli.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 2 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: necon3ad 2946 tz7.7 6383 onssneli 6475 tz7.48-2 8461 tz7.49 8464 php 9226 phpOLD 9236 nndomogOLD 9240 elirrv 9615 setind 9753 zorn2lem3 10517 alephval2 10591 inar1 10794 sltres 27631 dfon2lem6 35811 finminlem 36341 onint1 36472 poimirlem4 37653 ordnexbtwnsuc 43258 gneispace 44125 |
| Copyright terms: Public domain | W3C validator |