![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyli | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
nsyli.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
nsyli.2 | ⊢ (𝜃 → ¬ 𝜒) |
Ref | Expression |
---|---|
nsyli | ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyli.2 | . 2 ⊢ (𝜃 → ¬ 𝜒) | |
2 | nsyli.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: necon3ad 2951 tz7.7 6412 onssneli 6502 tz7.48-2 8481 tz7.49 8484 php 9245 phpOLD 9257 nndomogOLD 9261 elirrv 9634 setind 9772 zorn2lem3 10536 alephval2 10610 inar1 10813 sltres 27722 dfon2lem6 35770 finminlem 36301 onint1 36432 poimirlem4 37611 ordnexbtwnsuc 43257 gneispace 44124 |
Copyright terms: Public domain | W3C validator |