MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem1 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem1 27459
Description: Lemma for noinfbnd1 27465. Establish a soft lower bound. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem1
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 27454 . . 3 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1133 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 No )
4 simp2l 1198 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝐵 No )
5 simp3 1137 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈𝐵)
64, 5sseldd 3984 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈 No )
7 nodmon 27386 . . . 4 (𝑇 No → dom 𝑇 ∈ On)
83, 7syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ∈ On)
9 noreson 27396 . . 3 ((𝑈 No ∧ dom 𝑇 ∈ On) → (𝑈 ↾ dom 𝑇) ∈ No )
106, 8, 9syl2anc 583 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑈 ↾ dom 𝑇) ∈ No )
11 ssidd 4006 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ⊆ dom 𝑇)
12 dmres 6004 . . . 4 dom (𝑈 ↾ dom 𝑇) = (dom 𝑇 ∩ dom 𝑈)
13 inss1 4229 . . . 4 (dom 𝑇 ∩ dom 𝑈) ⊆ dom 𝑇
1412, 13eqsstri 4017 . . 3 dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇
1514a1i 11 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇)
16 nodmord 27389 . . . . . . . 8 (𝑇 No → Ord dom 𝑇)
173, 16syl 17 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → Ord dom 𝑇)
18 ordsucss 7809 . . . . . . 7 (Ord dom 𝑇 → ( ∈ dom 𝑇 → suc ⊆ dom 𝑇))
1917, 18syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 → suc ⊆ dom 𝑇))
2019imp 406 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → suc ⊆ dom 𝑇)
2120resabs1d 6013 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ((𝑈 ↾ dom 𝑇) ↾ suc ) = (𝑈 ↾ suc ))
221noinfdm 27455 . . . . . . . . 9 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))})
2322eleq2d 2818 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ∈ dom 𝑇 ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))}))
24 abid 2712 . . . . . . . . 9 ( ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))} ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))))
25 breq2 5153 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → (𝑝 <s 𝑞𝑝 <s 𝑣))
2625notbid 317 . . . . . . . . . . . . 13 (𝑞 = 𝑣 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑝 <s 𝑣))
27 reseq1 5976 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → (𝑞 ↾ suc ) = (𝑣 ↾ suc ))
2827eqeq2d 2742 . . . . . . . . . . . . 13 (𝑞 = 𝑣 → ((𝑝 ↾ suc ) = (𝑞 ↾ suc ) ↔ (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
2926, 28imbi12d 343 . . . . . . . . . . . 12 (𝑞 = 𝑣 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3029cbvralvw 3233 . . . . . . . . . . 11 (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )) ↔ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
3130anbi2i 622 . . . . . . . . . 10 (( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))) ↔ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3231rexbii 3093 . . . . . . . . 9 (∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))) ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3324, 32bitri 274 . . . . . . . 8 ( ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))} ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3423, 33bitrdi 286 . . . . . . 7 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ∈ dom 𝑇 ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))))
35343ad2ant1 1132 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))))
36 simpl2l 1225 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝐵 No )
37 simprl 768 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑝𝐵)
3836, 37sseldd 3984 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑝 No )
396adantr 480 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑈 No )
40 sltso 27412 . . . . . . . . . . . 12 <s Or No
41 soasym 5620 . . . . . . . . . . . 12 (( <s Or No ∧ (𝑝 No 𝑈 No )) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
4240, 41mpan 687 . . . . . . . . . . 11 ((𝑝 No 𝑈 No ) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
4338, 39, 42syl2anc 583 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
44 nodmon 27386 . . . . . . . . . . . . . 14 (𝑝 No → dom 𝑝 ∈ On)
4538, 44syl 17 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → dom 𝑝 ∈ On)
46 simprrl 778 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∈ dom 𝑝)
47 onelon 6390 . . . . . . . . . . . . 13 ((dom 𝑝 ∈ On ∧ ∈ dom 𝑝) → ∈ On)
4845, 46, 47syl2anc 583 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∈ On)
49 onsucb 7808 . . . . . . . . . . . 12 ( ∈ On ↔ suc ∈ On)
5048, 49sylib 217 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → suc ∈ On)
51 sltres 27398 . . . . . . . . . . 11 ((𝑈 No 𝑝 No ∧ suc ∈ On) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) → 𝑈 <s 𝑝))
5239, 38, 50, 51syl3anc 1370 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) → 𝑈 <s 𝑝))
5343, 52nsyld 156 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑝 <s 𝑈 → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
54 noreson 27396 . . . . . . . . . . . . . 14 ((𝑈 No ∧ suc ∈ On) → (𝑈 ↾ suc ) ∈ No )
5539, 50, 54syl2anc 583 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑈 ↾ suc ) ∈ No )
56 sonr 5612 . . . . . . . . . . . . . 14 (( <s Or No ∧ (𝑈 ↾ suc ) ∈ No ) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5740, 56mpan 687 . . . . . . . . . . . . 13 ((𝑈 ↾ suc ) ∈ No → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5855, 57syl 17 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5958adantr 480 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
60 breq2 5153 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑈 → (𝑝 <s 𝑣𝑝 <s 𝑈))
6160notbid 317 . . . . . . . . . . . . . . 15 (𝑣 = 𝑈 → (¬ 𝑝 <s 𝑣 ↔ ¬ 𝑝 <s 𝑈))
62 reseq1 5976 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑈 → (𝑣 ↾ suc ) = (𝑈 ↾ suc ))
6362eqeq2d 2742 . . . . . . . . . . . . . . 15 (𝑣 = 𝑈 → ((𝑝 ↾ suc ) = (𝑣 ↾ suc ) ↔ (𝑝 ↾ suc ) = (𝑈 ↾ suc )))
6461, 63imbi12d 343 . . . . . . . . . . . . . 14 (𝑣 = 𝑈 → ((¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )) ↔ (¬ 𝑝 <s 𝑈 → (𝑝 ↾ suc ) = (𝑈 ↾ suc ))))
65 simprrr 779 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
66 simpl3 1192 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑈𝐵)
6764, 65, 66rspcdva 3614 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (¬ 𝑝 <s 𝑈 → (𝑝 ↾ suc ) = (𝑈 ↾ suc )))
6867imp 406 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → (𝑝 ↾ suc ) = (𝑈 ↾ suc ))
6968breq2d 5161 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) ↔ (𝑈 ↾ suc ) <s (𝑈 ↾ suc )))
7059, 69mtbird 324 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc ))
7170ex 412 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (¬ 𝑝 <s 𝑈 → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
7253, 71pm2.61d 179 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc ))
73 simpl1 1190 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
74 simpl2 1191 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝐵 No 𝐵𝑉))
751noinfres 27458 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑝𝐵 ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))) → (𝑇 ↾ suc ) = (𝑝 ↾ suc ))
7673, 74, 37, 46, 65, 75syl113anc 1381 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑇 ↾ suc ) = (𝑝 ↾ suc ))
7776breq2d 5161 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ((𝑈 ↾ suc ) <s (𝑇 ↾ suc ) ↔ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
7872, 77mtbird 324 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc ))
7978rexlimdvaa 3155 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc )))
8035, 79sylbid 239 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc )))
8180imp 406 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc ))
8221, 81eqnbrtrd 5167 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))
8382ralrimiva 3145 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ∀ ∈ dom 𝑇 ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))
84 noresle 27433 . 2 (((𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No ) ∧ (dom 𝑇 ⊆ dom 𝑇 ∧ dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ ∀ ∈ dom 𝑇 ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
853, 10, 11, 15, 83, 84syl23anc 1376 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  {cab 2708  wral 3060  wrex 3069  cun 3947  cin 3948  wss 3949  ifcif 4529  {csn 4629  cop 4635   class class class wbr 5149  cmpt 5232   Or wor 5588  dom cdm 5677  cres 5679  Ord word 6364  Oncon0 6365  suc csuc 6367  cio 6494  cfv 6544  crio 7367  1oc1o 8462   No csur 27376   <s cslt 27377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-1o 8469  df-2o 8470  df-no 27379  df-slt 27380  df-bday 27381
This theorem is referenced by:  noinfbnd1lem2  27460  noinfbnd1lem6  27464
  Copyright terms: Public domain W3C validator