MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem1 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem1 27753
Description: Lemma for noinfbnd1 27759. Establish a soft lower bound. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem1
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 27748 . . 3 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1131 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 No )
4 simp2l 1196 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝐵 No )
5 simp3 1135 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈𝐵)
64, 5sseldd 3980 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈 No )
7 nodmon 27680 . . . 4 (𝑇 No → dom 𝑇 ∈ On)
83, 7syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ∈ On)
9 noreson 27690 . . 3 ((𝑈 No ∧ dom 𝑇 ∈ On) → (𝑈 ↾ dom 𝑇) ∈ No )
106, 8, 9syl2anc 582 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑈 ↾ dom 𝑇) ∈ No )
11 ssidd 4003 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ⊆ dom 𝑇)
12 dmres 6021 . . . 4 dom (𝑈 ↾ dom 𝑇) = (dom 𝑇 ∩ dom 𝑈)
13 inss1 4230 . . . 4 (dom 𝑇 ∩ dom 𝑈) ⊆ dom 𝑇
1412, 13eqsstri 4014 . . 3 dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇
1514a1i 11 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇)
16 nodmord 27683 . . . . . . . 8 (𝑇 No → Ord dom 𝑇)
173, 16syl 17 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → Ord dom 𝑇)
18 ordsucss 7827 . . . . . . 7 (Ord dom 𝑇 → ( ∈ dom 𝑇 → suc ⊆ dom 𝑇))
1917, 18syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 → suc ⊆ dom 𝑇))
2019imp 405 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → suc ⊆ dom 𝑇)
2120resabs1d 6017 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ((𝑈 ↾ dom 𝑇) ↾ suc ) = (𝑈 ↾ suc ))
221noinfdm 27749 . . . . . . . . 9 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))})
2322eleq2d 2812 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ∈ dom 𝑇 ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))}))
24 abid 2707 . . . . . . . . 9 ( ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))} ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))))
25 breq2 5157 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → (𝑝 <s 𝑞𝑝 <s 𝑣))
2625notbid 317 . . . . . . . . . . . . 13 (𝑞 = 𝑣 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑝 <s 𝑣))
27 reseq1 5983 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → (𝑞 ↾ suc ) = (𝑣 ↾ suc ))
2827eqeq2d 2737 . . . . . . . . . . . . 13 (𝑞 = 𝑣 → ((𝑝 ↾ suc ) = (𝑞 ↾ suc ) ↔ (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
2926, 28imbi12d 343 . . . . . . . . . . . 12 (𝑞 = 𝑣 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3029cbvralvw 3225 . . . . . . . . . . 11 (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )) ↔ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
3130anbi2i 621 . . . . . . . . . 10 (( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))) ↔ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3231rexbii 3084 . . . . . . . . 9 (∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))) ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3324, 32bitri 274 . . . . . . . 8 ( ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))} ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3423, 33bitrdi 286 . . . . . . 7 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ∈ dom 𝑇 ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))))
35343ad2ant1 1130 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))))
36 simpl2l 1223 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝐵 No )
37 simprl 769 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑝𝐵)
3836, 37sseldd 3980 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑝 No )
396adantr 479 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑈 No )
40 sltso 27706 . . . . . . . . . . . 12 <s Or No
41 soasym 5625 . . . . . . . . . . . 12 (( <s Or No ∧ (𝑝 No 𝑈 No )) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
4240, 41mpan 688 . . . . . . . . . . 11 ((𝑝 No 𝑈 No ) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
4338, 39, 42syl2anc 582 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
44 nodmon 27680 . . . . . . . . . . . . . 14 (𝑝 No → dom 𝑝 ∈ On)
4538, 44syl 17 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → dom 𝑝 ∈ On)
46 simprrl 779 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∈ dom 𝑝)
47 onelon 6401 . . . . . . . . . . . . 13 ((dom 𝑝 ∈ On ∧ ∈ dom 𝑝) → ∈ On)
4845, 46, 47syl2anc 582 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∈ On)
49 onsucb 7826 . . . . . . . . . . . 12 ( ∈ On ↔ suc ∈ On)
5048, 49sylib 217 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → suc ∈ On)
51 sltres 27692 . . . . . . . . . . 11 ((𝑈 No 𝑝 No ∧ suc ∈ On) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) → 𝑈 <s 𝑝))
5239, 38, 50, 51syl3anc 1368 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) → 𝑈 <s 𝑝))
5343, 52nsyld 156 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑝 <s 𝑈 → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
54 noreson 27690 . . . . . . . . . . . . . 14 ((𝑈 No ∧ suc ∈ On) → (𝑈 ↾ suc ) ∈ No )
5539, 50, 54syl2anc 582 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑈 ↾ suc ) ∈ No )
56 sonr 5617 . . . . . . . . . . . . . 14 (( <s Or No ∧ (𝑈 ↾ suc ) ∈ No ) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5740, 56mpan 688 . . . . . . . . . . . . 13 ((𝑈 ↾ suc ) ∈ No → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5855, 57syl 17 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5958adantr 479 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
60 breq2 5157 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑈 → (𝑝 <s 𝑣𝑝 <s 𝑈))
6160notbid 317 . . . . . . . . . . . . . . 15 (𝑣 = 𝑈 → (¬ 𝑝 <s 𝑣 ↔ ¬ 𝑝 <s 𝑈))
62 reseq1 5983 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑈 → (𝑣 ↾ suc ) = (𝑈 ↾ suc ))
6362eqeq2d 2737 . . . . . . . . . . . . . . 15 (𝑣 = 𝑈 → ((𝑝 ↾ suc ) = (𝑣 ↾ suc ) ↔ (𝑝 ↾ suc ) = (𝑈 ↾ suc )))
6461, 63imbi12d 343 . . . . . . . . . . . . . 14 (𝑣 = 𝑈 → ((¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )) ↔ (¬ 𝑝 <s 𝑈 → (𝑝 ↾ suc ) = (𝑈 ↾ suc ))))
65 simprrr 780 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
66 simpl3 1190 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑈𝐵)
6764, 65, 66rspcdva 3609 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (¬ 𝑝 <s 𝑈 → (𝑝 ↾ suc ) = (𝑈 ↾ suc )))
6867imp 405 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → (𝑝 ↾ suc ) = (𝑈 ↾ suc ))
6968breq2d 5165 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) ↔ (𝑈 ↾ suc ) <s (𝑈 ↾ suc )))
7059, 69mtbird 324 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc ))
7170ex 411 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (¬ 𝑝 <s 𝑈 → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
7253, 71pm2.61d 179 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc ))
73 simpl1 1188 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
74 simpl2 1189 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝐵 No 𝐵𝑉))
751noinfres 27752 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑝𝐵 ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))) → (𝑇 ↾ suc ) = (𝑝 ↾ suc ))
7673, 74, 37, 46, 65, 75syl113anc 1379 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑇 ↾ suc ) = (𝑝 ↾ suc ))
7776breq2d 5165 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ((𝑈 ↾ suc ) <s (𝑇 ↾ suc ) ↔ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
7872, 77mtbird 324 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc ))
7978rexlimdvaa 3146 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc )))
8035, 79sylbid 239 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc )))
8180imp 405 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc ))
8221, 81eqnbrtrd 5171 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))
8382ralrimiva 3136 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ∀ ∈ dom 𝑇 ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))
84 noresle 27727 . 2 (((𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No ) ∧ (dom 𝑇 ⊆ dom 𝑇 ∧ dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ ∀ ∈ dom 𝑇 ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
853, 10, 11, 15, 83, 84syl23anc 1374 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  {cab 2703  wral 3051  wrex 3060  cun 3945  cin 3946  wss 3947  ifcif 4533  {csn 4633  cop 4639   class class class wbr 5153  cmpt 5236   Or wor 5593  dom cdm 5682  cres 5684  Ord word 6375  Oncon0 6376  suc csuc 6378  cio 6504  cfv 6554  crio 7379  1oc1o 8489   No csur 27669   <s cslt 27670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-fo 6560  df-fv 6562  df-riota 7380  df-1o 8496  df-2o 8497  df-no 27672  df-slt 27673  df-bday 27674
This theorem is referenced by:  noinfbnd1lem2  27754  noinfbnd1lem6  27758
  Copyright terms: Public domain W3C validator