Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd1lem1 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem1 33926
Description: Lemma for noinfbnd1 33932. Establish a soft lower bound. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem1
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 33921 . . 3 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1133 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 No )
4 simp2l 1198 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝐵 No )
5 simp3 1137 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈𝐵)
64, 5sseldd 3922 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈 No )
7 nodmon 33853 . . . 4 (𝑇 No → dom 𝑇 ∈ On)
83, 7syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ∈ On)
9 noreson 33863 . . 3 ((𝑈 No ∧ dom 𝑇 ∈ On) → (𝑈 ↾ dom 𝑇) ∈ No )
106, 8, 9syl2anc 584 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑈 ↾ dom 𝑇) ∈ No )
11 ssidd 3944 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ⊆ dom 𝑇)
12 dmres 5913 . . . 4 dom (𝑈 ↾ dom 𝑇) = (dom 𝑇 ∩ dom 𝑈)
13 inss1 4162 . . . 4 (dom 𝑇 ∩ dom 𝑈) ⊆ dom 𝑇
1412, 13eqsstri 3955 . . 3 dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇
1514a1i 11 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇)
16 nodmord 33856 . . . . . . . 8 (𝑇 No → Ord dom 𝑇)
173, 16syl 17 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → Ord dom 𝑇)
18 ordsucss 7665 . . . . . . 7 (Ord dom 𝑇 → ( ∈ dom 𝑇 → suc ⊆ dom 𝑇))
1917, 18syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 → suc ⊆ dom 𝑇))
2019imp 407 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → suc ⊆ dom 𝑇)
2120resabs1d 5922 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ((𝑈 ↾ dom 𝑇) ↾ suc ) = (𝑈 ↾ suc ))
221noinfdm 33922 . . . . . . . . 9 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))})
2322eleq2d 2824 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ∈ dom 𝑇 ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))}))
24 abid 2719 . . . . . . . . 9 ( ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))} ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))))
25 breq2 5078 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → (𝑝 <s 𝑞𝑝 <s 𝑣))
2625notbid 318 . . . . . . . . . . . . 13 (𝑞 = 𝑣 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑝 <s 𝑣))
27 reseq1 5885 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → (𝑞 ↾ suc ) = (𝑣 ↾ suc ))
2827eqeq2d 2749 . . . . . . . . . . . . 13 (𝑞 = 𝑣 → ((𝑝 ↾ suc ) = (𝑞 ↾ suc ) ↔ (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
2926, 28imbi12d 345 . . . . . . . . . . . 12 (𝑞 = 𝑣 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3029cbvralvw 3383 . . . . . . . . . . 11 (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )) ↔ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
3130anbi2i 623 . . . . . . . . . 10 (( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))) ↔ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3231rexbii 3181 . . . . . . . . 9 (∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))) ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3324, 32bitri 274 . . . . . . . 8 ( ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))} ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3423, 33bitrdi 287 . . . . . . 7 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ∈ dom 𝑇 ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))))
35343ad2ant1 1132 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))))
36 simpl2l 1225 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝐵 No )
37 simprl 768 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑝𝐵)
3836, 37sseldd 3922 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑝 No )
396adantr 481 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑈 No )
40 sltso 33879 . . . . . . . . . . . 12 <s Or No
41 soasym 5534 . . . . . . . . . . . 12 (( <s Or No ∧ (𝑝 No 𝑈 No )) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
4240, 41mpan 687 . . . . . . . . . . 11 ((𝑝 No 𝑈 No ) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
4338, 39, 42syl2anc 584 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
44 nodmon 33853 . . . . . . . . . . . . . 14 (𝑝 No → dom 𝑝 ∈ On)
4538, 44syl 17 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → dom 𝑝 ∈ On)
46 simprrl 778 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∈ dom 𝑝)
47 onelon 6291 . . . . . . . . . . . . 13 ((dom 𝑝 ∈ On ∧ ∈ dom 𝑝) → ∈ On)
4845, 46, 47syl2anc 584 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∈ On)
49 sucelon 7664 . . . . . . . . . . . 12 ( ∈ On ↔ suc ∈ On)
5048, 49sylib 217 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → suc ∈ On)
51 sltres 33865 . . . . . . . . . . 11 ((𝑈 No 𝑝 No ∧ suc ∈ On) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) → 𝑈 <s 𝑝))
5239, 38, 50, 51syl3anc 1370 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) → 𝑈 <s 𝑝))
5343, 52nsyld 156 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑝 <s 𝑈 → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
54 noreson 33863 . . . . . . . . . . . . . 14 ((𝑈 No ∧ suc ∈ On) → (𝑈 ↾ suc ) ∈ No )
5539, 50, 54syl2anc 584 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑈 ↾ suc ) ∈ No )
56 sonr 5526 . . . . . . . . . . . . . 14 (( <s Or No ∧ (𝑈 ↾ suc ) ∈ No ) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5740, 56mpan 687 . . . . . . . . . . . . 13 ((𝑈 ↾ suc ) ∈ No → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5855, 57syl 17 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5958adantr 481 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
60 breq2 5078 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑈 → (𝑝 <s 𝑣𝑝 <s 𝑈))
6160notbid 318 . . . . . . . . . . . . . . 15 (𝑣 = 𝑈 → (¬ 𝑝 <s 𝑣 ↔ ¬ 𝑝 <s 𝑈))
62 reseq1 5885 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑈 → (𝑣 ↾ suc ) = (𝑈 ↾ suc ))
6362eqeq2d 2749 . . . . . . . . . . . . . . 15 (𝑣 = 𝑈 → ((𝑝 ↾ suc ) = (𝑣 ↾ suc ) ↔ (𝑝 ↾ suc ) = (𝑈 ↾ suc )))
6461, 63imbi12d 345 . . . . . . . . . . . . . 14 (𝑣 = 𝑈 → ((¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )) ↔ (¬ 𝑝 <s 𝑈 → (𝑝 ↾ suc ) = (𝑈 ↾ suc ))))
65 simprrr 779 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
66 simpl3 1192 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑈𝐵)
6764, 65, 66rspcdva 3562 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (¬ 𝑝 <s 𝑈 → (𝑝 ↾ suc ) = (𝑈 ↾ suc )))
6867imp 407 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → (𝑝 ↾ suc ) = (𝑈 ↾ suc ))
6968breq2d 5086 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) ↔ (𝑈 ↾ suc ) <s (𝑈 ↾ suc )))
7059, 69mtbird 325 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc ))
7170ex 413 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (¬ 𝑝 <s 𝑈 → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
7253, 71pm2.61d 179 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc ))
73 simpl1 1190 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
74 simpl2 1191 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝐵 No 𝐵𝑉))
751noinfres 33925 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑝𝐵 ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))) → (𝑇 ↾ suc ) = (𝑝 ↾ suc ))
7673, 74, 37, 46, 65, 75syl113anc 1381 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑇 ↾ suc ) = (𝑝 ↾ suc ))
7776breq2d 5086 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ((𝑈 ↾ suc ) <s (𝑇 ↾ suc ) ↔ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
7872, 77mtbird 325 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc ))
7978rexlimdvaa 3214 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc )))
8035, 79sylbid 239 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc )))
8180imp 407 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc ))
8221, 81eqnbrtrd 5092 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))
8382ralrimiva 3103 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ∀ ∈ dom 𝑇 ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))
84 noresle 33900 . 2 (((𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No ) ∧ (dom 𝑇 ⊆ dom 𝑇 ∧ dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ ∀ ∈ dom 𝑇 ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
853, 10, 11, 15, 83, 84syl23anc 1376 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  cun 3885  cin 3886  wss 3887  ifcif 4459  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157   Or wor 5502  dom cdm 5589  cres 5591  Ord word 6265  Oncon0 6266  suc csuc 6268  cio 6389  cfv 6433  crio 7231  1oc1o 8290   No csur 33843   <s cslt 33844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848
This theorem is referenced by:  noinfbnd1lem2  33927  noinfbnd1lem6  33931
  Copyright terms: Public domain W3C validator