MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem1 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem1 27668
Description: Lemma for noinfbnd1 27674. Establish a soft lower bound. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem1
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 27663 . . 3 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1134 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 No )
4 simp2l 1200 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝐵 No )
5 simp3 1138 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈𝐵)
64, 5sseldd 3944 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈 No )
7 nodmon 27595 . . . 4 (𝑇 No → dom 𝑇 ∈ On)
83, 7syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ∈ On)
9 noreson 27605 . . 3 ((𝑈 No ∧ dom 𝑇 ∈ On) → (𝑈 ↾ dom 𝑇) ∈ No )
106, 8, 9syl2anc 584 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑈 ↾ dom 𝑇) ∈ No )
11 ssidd 3967 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ⊆ dom 𝑇)
12 dmres 5972 . . . 4 dom (𝑈 ↾ dom 𝑇) = (dom 𝑇 ∩ dom 𝑈)
13 inss1 4196 . . . 4 (dom 𝑇 ∩ dom 𝑈) ⊆ dom 𝑇
1412, 13eqsstri 3990 . . 3 dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇
1514a1i 11 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇)
16 nodmord 27598 . . . . . . . 8 (𝑇 No → Ord dom 𝑇)
173, 16syl 17 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → Ord dom 𝑇)
18 ordsucss 7773 . . . . . . 7 (Ord dom 𝑇 → ( ∈ dom 𝑇 → suc ⊆ dom 𝑇))
1917, 18syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 → suc ⊆ dom 𝑇))
2019imp 406 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → suc ⊆ dom 𝑇)
2120resabs1d 5968 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ((𝑈 ↾ dom 𝑇) ↾ suc ) = (𝑈 ↾ suc ))
221noinfdm 27664 . . . . . . . . 9 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))})
2322eleq2d 2814 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ∈ dom 𝑇 ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))}))
24 abid 2711 . . . . . . . . 9 ( ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))} ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))))
25 breq2 5106 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → (𝑝 <s 𝑞𝑝 <s 𝑣))
2625notbid 318 . . . . . . . . . . . . 13 (𝑞 = 𝑣 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑝 <s 𝑣))
27 reseq1 5933 . . . . . . . . . . . . . 14 (𝑞 = 𝑣 → (𝑞 ↾ suc ) = (𝑣 ↾ suc ))
2827eqeq2d 2740 . . . . . . . . . . . . 13 (𝑞 = 𝑣 → ((𝑝 ↾ suc ) = (𝑞 ↾ suc ) ↔ (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
2926, 28imbi12d 344 . . . . . . . . . . . 12 (𝑞 = 𝑣 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )) ↔ (¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3029cbvralvw 3213 . . . . . . . . . . 11 (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )) ↔ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
3130anbi2i 623 . . . . . . . . . 10 (( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))) ↔ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3231rexbii 3076 . . . . . . . . 9 (∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc ))) ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3324, 32bitri 275 . . . . . . . 8 ( ∈ { ∣ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc ) = (𝑞 ↾ suc )))} ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))
3423, 33bitrdi 287 . . . . . . 7 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ∈ dom 𝑇 ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))))
35343ad2ant1 1133 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 ↔ ∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))))
36 simpl2l 1227 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝐵 No )
37 simprl 770 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑝𝐵)
3836, 37sseldd 3944 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑝 No )
396adantr 480 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑈 No )
40 sltso 27621 . . . . . . . . . . . 12 <s Or No
41 soasym 5572 . . . . . . . . . . . 12 (( <s Or No ∧ (𝑝 No 𝑈 No )) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
4240, 41mpan 690 . . . . . . . . . . 11 ((𝑝 No 𝑈 No ) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
4338, 39, 42syl2anc 584 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝))
44 nodmon 27595 . . . . . . . . . . . . . 14 (𝑝 No → dom 𝑝 ∈ On)
4538, 44syl 17 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → dom 𝑝 ∈ On)
46 simprrl 780 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∈ dom 𝑝)
47 onelon 6345 . . . . . . . . . . . . 13 ((dom 𝑝 ∈ On ∧ ∈ dom 𝑝) → ∈ On)
4845, 46, 47syl2anc 584 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∈ On)
49 onsucb 7772 . . . . . . . . . . . 12 ( ∈ On ↔ suc ∈ On)
5048, 49sylib 218 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → suc ∈ On)
51 sltres 27607 . . . . . . . . . . 11 ((𝑈 No 𝑝 No ∧ suc ∈ On) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) → 𝑈 <s 𝑝))
5239, 38, 50, 51syl3anc 1373 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) → 𝑈 <s 𝑝))
5343, 52nsyld 156 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑝 <s 𝑈 → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
54 noreson 27605 . . . . . . . . . . . . . 14 ((𝑈 No ∧ suc ∈ On) → (𝑈 ↾ suc ) ∈ No )
5539, 50, 54syl2anc 584 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑈 ↾ suc ) ∈ No )
56 sonr 5563 . . . . . . . . . . . . . 14 (( <s Or No ∧ (𝑈 ↾ suc ) ∈ No ) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5740, 56mpan 690 . . . . . . . . . . . . 13 ((𝑈 ↾ suc ) ∈ No → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5855, 57syl 17 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
5958adantr 480 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ¬ (𝑈 ↾ suc ) <s (𝑈 ↾ suc ))
60 breq2 5106 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑈 → (𝑝 <s 𝑣𝑝 <s 𝑈))
6160notbid 318 . . . . . . . . . . . . . . 15 (𝑣 = 𝑈 → (¬ 𝑝 <s 𝑣 ↔ ¬ 𝑝 <s 𝑈))
62 reseq1 5933 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑈 → (𝑣 ↾ suc ) = (𝑈 ↾ suc ))
6362eqeq2d 2740 . . . . . . . . . . . . . . 15 (𝑣 = 𝑈 → ((𝑝 ↾ suc ) = (𝑣 ↾ suc ) ↔ (𝑝 ↾ suc ) = (𝑈 ↾ suc )))
6461, 63imbi12d 344 . . . . . . . . . . . . . 14 (𝑣 = 𝑈 → ((¬ 𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )) ↔ (¬ 𝑝 <s 𝑈 → (𝑝 ↾ suc ) = (𝑈 ↾ suc ))))
65 simprrr 781 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))
66 simpl3 1194 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → 𝑈𝐵)
6764, 65, 66rspcdva 3586 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (¬ 𝑝 <s 𝑈 → (𝑝 ↾ suc ) = (𝑈 ↾ suc )))
6867imp 406 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → (𝑝 ↾ suc ) = (𝑈 ↾ suc ))
6968breq2d 5114 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ((𝑈 ↾ suc ) <s (𝑝 ↾ suc ) ↔ (𝑈 ↾ suc ) <s (𝑈 ↾ suc )))
7059, 69mtbird 325 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) ∧ ¬ 𝑝 <s 𝑈) → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc ))
7170ex 412 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (¬ 𝑝 <s 𝑈 → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
7253, 71pm2.61d 179 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑝 ↾ suc ))
73 simpl1 1192 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
74 simpl2 1193 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝐵 No 𝐵𝑉))
751noinfres 27667 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑝𝐵 ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc )))) → (𝑇 ↾ suc ) = (𝑝 ↾ suc ))
7673, 74, 37, 46, 65, 75syl113anc 1384 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → (𝑇 ↾ suc ) = (𝑝 ↾ suc ))
7776breq2d 5114 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ((𝑈 ↾ suc ) <s (𝑇 ↾ suc ) ↔ (𝑈 ↾ suc ) <s (𝑝 ↾ suc )))
7872, 77mtbird 325 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ (𝑝𝐵 ∧ ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))))) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc ))
7978rexlimdvaa 3135 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (∃𝑝𝐵 ( ∈ dom 𝑝 ∧ ∀𝑣𝐵𝑝 <s 𝑣 → (𝑝 ↾ suc ) = (𝑣 ↾ suc ))) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc )))
8035, 79sylbid 240 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ( ∈ dom 𝑇 → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc )))
8180imp 406 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ¬ (𝑈 ↾ suc ) <s (𝑇 ↾ suc ))
8221, 81eqnbrtrd 5120 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ ∈ dom 𝑇) → ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))
8382ralrimiva 3125 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ∀ ∈ dom 𝑇 ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))
84 noresle 27642 . 2 (((𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No ) ∧ (dom 𝑇 ⊆ dom 𝑇 ∧ dom (𝑈 ↾ dom 𝑇) ⊆ dom 𝑇 ∧ ∀ ∈ dom 𝑇 ¬ ((𝑈 ↾ dom 𝑇) ↾ suc ) <s (𝑇 ↾ suc ))) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
853, 10, 11, 15, 83, 84syl23anc 1379 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  cun 3909  cin 3910  wss 3911  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183   Or wor 5538  dom cdm 5631  cres 5633  Ord word 6319  Oncon0 6320  suc csuc 6322  cio 6450  cfv 6499  crio 7325  1oc1o 8404   No csur 27584   <s cslt 27585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-riota 7326  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589
This theorem is referenced by:  noinfbnd1lem2  27669  noinfbnd1lem6  27673
  Copyright terms: Public domain W3C validator