Proof of Theorem ifeqeqx
| Step | Hyp | Ref
| Expression |
| 1 | | eqeq2 2749 |
. 2
⊢ (𝐴 = if(𝜒, 𝐴, 𝐵) → (𝑎 = 𝐴 ↔ 𝑎 = if(𝜒, 𝐴, 𝐵))) |
| 2 | | eqeq2 2749 |
. 2
⊢ (𝐵 = if(𝜒, 𝐴, 𝐵) → (𝑎 = 𝐵 ↔ 𝑎 = if(𝜒, 𝐴, 𝐵))) |
| 3 | | simplr 769 |
. . 3
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ 𝜒) → 𝑥 = if(𝜓, 𝑋, 𝑌)) |
| 4 | | simpll 767 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ 𝜒) → 𝜑) |
| 5 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ 𝜒) → 𝜒) |
| 6 | | sbceq1a 3799 |
. . . . . 6
⊢ (𝑥 = if(𝜓, 𝑋, 𝑌) → (𝜒 ↔ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒)) |
| 7 | 6 | biimpd 229 |
. . . . 5
⊢ (𝑥 = if(𝜓, 𝑋, 𝑌) → (𝜒 → [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒)) |
| 8 | 3, 5, 7 | sylc 65 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ 𝜒) → [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒) |
| 9 | | dfsbcq 3790 |
. . . . . 6
⊢ (𝑋 = if(𝜓, 𝑋, 𝑌) → ([𝑋 / 𝑥]𝜒 ↔ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒)) |
| 10 | | csbeq1 3902 |
. . . . . . 7
⊢ (𝑋 = if(𝜓, 𝑋, 𝑌) → ⦋𝑋 / 𝑥⦌𝐴 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴) |
| 11 | 10 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑋 = if(𝜓, 𝑋, 𝑌) → (𝑎 = ⦋𝑋 / 𝑥⦌𝐴 ↔ 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴)) |
| 12 | 9, 11 | imbi12d 344 |
. . . . 5
⊢ (𝑋 = if(𝜓, 𝑋, 𝑌) → (([𝑋 / 𝑥]𝜒 → 𝑎 = ⦋𝑋 / 𝑥⦌𝐴) ↔ ([if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒 → 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴))) |
| 13 | | dfsbcq 3790 |
. . . . . 6
⊢ (𝑌 = if(𝜓, 𝑋, 𝑌) → ([𝑌 / 𝑥]𝜒 ↔ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒)) |
| 14 | | csbeq1 3902 |
. . . . . . 7
⊢ (𝑌 = if(𝜓, 𝑋, 𝑌) → ⦋𝑌 / 𝑥⦌𝐴 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴) |
| 15 | 14 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑌 = if(𝜓, 𝑋, 𝑌) → (𝑎 = ⦋𝑌 / 𝑥⦌𝐴 ↔ 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴)) |
| 16 | 13, 15 | imbi12d 344 |
. . . . 5
⊢ (𝑌 = if(𝜓, 𝑋, 𝑌) → (([𝑌 / 𝑥]𝜒 → 𝑎 = ⦋𝑌 / 𝑥⦌𝐴) ↔ ([if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒 → 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴))) |
| 17 | | ifeqeqx.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| 18 | | nfcvd 2906 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝑊 → Ⅎ𝑥𝐶) |
| 19 | | ifeqeqx.1 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → 𝐴 = 𝐶) |
| 20 | 18, 19 | csbiegf 3932 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑊 → ⦋𝑋 / 𝑥⦌𝐴 = 𝐶) |
| 21 | 17, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ⦋𝑋 / 𝑥⦌𝐴 = 𝐶) |
| 22 | | ifeqeqx.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑎 = 𝐶) |
| 23 | 21, 22 | eqtr4d 2780 |
. . . . . . . 8
⊢ (𝜑 → ⦋𝑋 / 𝑥⦌𝐴 = 𝑎) |
| 24 | 23 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → ⦋𝑋 / 𝑥⦌𝐴 = 𝑎) |
| 25 | 24 | eqcomd 2743 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝑎 = ⦋𝑋 / 𝑥⦌𝐴) |
| 26 | 25 | a1d 25 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → ([𝑋 / 𝑥]𝜒 → 𝑎 = ⦋𝑋 / 𝑥⦌𝐴)) |
| 27 | | pm3.24 402 |
. . . . . . . . . 10
⊢ ¬
(𝜓 ∧ ¬ 𝜓) |
| 28 | | ifeqeqx.y |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 29 | | ifeqeqx.4 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑌 → (𝜒 ↔ 𝜓)) |
| 30 | 29 | sbcieg 3828 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑥]𝜒 ↔ 𝜓)) |
| 31 | 28, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ([𝑌 / 𝑥]𝜒 ↔ 𝜓)) |
| 32 | 31 | anbi1d 631 |
. . . . . . . . . 10
⊢ (𝜑 → (([𝑌 / 𝑥]𝜒 ∧ ¬ 𝜓) ↔ (𝜓 ∧ ¬ 𝜓))) |
| 33 | 27, 32 | mtbiri 327 |
. . . . . . . . 9
⊢ (𝜑 → ¬ ([𝑌 / 𝑥]𝜒 ∧ ¬ 𝜓)) |
| 34 | 33 | pm2.21d 121 |
. . . . . . . 8
⊢ (𝜑 → (([𝑌 / 𝑥]𝜒 ∧ ¬ 𝜓) → 𝑎 = ⦋𝑌 / 𝑥⦌𝐴)) |
| 35 | 34 | imp 406 |
. . . . . . 7
⊢ ((𝜑 ∧ ([𝑌 / 𝑥]𝜒 ∧ ¬ 𝜓)) → 𝑎 = ⦋𝑌 / 𝑥⦌𝐴) |
| 36 | 35 | anass1rs 655 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ [𝑌 / 𝑥]𝜒) → 𝑎 = ⦋𝑌 / 𝑥⦌𝐴) |
| 37 | 36 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝜓) → ([𝑌 / 𝑥]𝜒 → 𝑎 = ⦋𝑌 / 𝑥⦌𝐴)) |
| 38 | 12, 16, 26, 37 | ifbothda 4564 |
. . . 4
⊢ (𝜑 → ([if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒 → 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴)) |
| 39 | 4, 8, 38 | sylc 65 |
. . 3
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ 𝜒) → 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴) |
| 40 | | csbeq1a 3913 |
. . . . 5
⊢ (𝑥 = if(𝜓, 𝑋, 𝑌) → 𝐴 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴) |
| 41 | 40 | eqeq2d 2748 |
. . . 4
⊢ (𝑥 = if(𝜓, 𝑋, 𝑌) → (𝑎 = 𝐴 ↔ 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴)) |
| 42 | 41 | biimprd 248 |
. . 3
⊢ (𝑥 = if(𝜓, 𝑋, 𝑌) → (𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐴 → 𝑎 = 𝐴)) |
| 43 | 3, 39, 42 | sylc 65 |
. 2
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ 𝜒) → 𝑎 = 𝐴) |
| 44 | | simplr 769 |
. . 3
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ ¬ 𝜒) → 𝑥 = if(𝜓, 𝑋, 𝑌)) |
| 45 | | simpll 767 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ ¬ 𝜒) → 𝜑) |
| 46 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ ¬ 𝜒) → ¬ 𝜒) |
| 47 | 6 | notbid 318 |
. . . . . 6
⊢ (𝑥 = if(𝜓, 𝑋, 𝑌) → (¬ 𝜒 ↔ ¬ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒)) |
| 48 | 47 | biimpd 229 |
. . . . 5
⊢ (𝑥 = if(𝜓, 𝑋, 𝑌) → (¬ 𝜒 → ¬ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒)) |
| 49 | 44, 46, 48 | sylc 65 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ ¬ 𝜒) → ¬ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒) |
| 50 | 9 | notbid 318 |
. . . . . 6
⊢ (𝑋 = if(𝜓, 𝑋, 𝑌) → (¬ [𝑋 / 𝑥]𝜒 ↔ ¬ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒)) |
| 51 | | csbeq1 3902 |
. . . . . . 7
⊢ (𝑋 = if(𝜓, 𝑋, 𝑌) → ⦋𝑋 / 𝑥⦌𝐵 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵) |
| 52 | 51 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑋 = if(𝜓, 𝑋, 𝑌) → (𝑎 = ⦋𝑋 / 𝑥⦌𝐵 ↔ 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵)) |
| 53 | 50, 52 | imbi12d 344 |
. . . . 5
⊢ (𝑋 = if(𝜓, 𝑋, 𝑌) → ((¬ [𝑋 / 𝑥]𝜒 → 𝑎 = ⦋𝑋 / 𝑥⦌𝐵) ↔ (¬ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒 → 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵))) |
| 54 | 13 | notbid 318 |
. . . . . 6
⊢ (𝑌 = if(𝜓, 𝑋, 𝑌) → (¬ [𝑌 / 𝑥]𝜒 ↔ ¬ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒)) |
| 55 | | csbeq1 3902 |
. . . . . . 7
⊢ (𝑌 = if(𝜓, 𝑋, 𝑌) → ⦋𝑌 / 𝑥⦌𝐵 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵) |
| 56 | 55 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑌 = if(𝜓, 𝑋, 𝑌) → (𝑎 = ⦋𝑌 / 𝑥⦌𝐵 ↔ 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵)) |
| 57 | 54, 56 | imbi12d 344 |
. . . . 5
⊢ (𝑌 = if(𝜓, 𝑋, 𝑌) → ((¬ [𝑌 / 𝑥]𝜒 → 𝑎 = ⦋𝑌 / 𝑥⦌𝐵) ↔ (¬ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒 → 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵))) |
| 58 | | ifeqeqx.3 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → (𝜒 ↔ 𝜃)) |
| 59 | 58 | sbcieg 3828 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝑊 → ([𝑋 / 𝑥]𝜒 ↔ 𝜃)) |
| 60 | 17, 59 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ([𝑋 / 𝑥]𝜒 ↔ 𝜃)) |
| 61 | 60 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝜑 → (¬ [𝑋 / 𝑥]𝜒 ↔ ¬ 𝜃)) |
| 62 | 61 | biimpd 229 |
. . . . . . . . . 10
⊢ (𝜑 → (¬ [𝑋 / 𝑥]𝜒 → ¬ 𝜃)) |
| 63 | | ifeqeqx.6 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 64 | 63 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → (𝜓 → 𝜃)) |
| 65 | 62, 64 | nsyld 156 |
. . . . . . . . 9
⊢ (𝜑 → (¬ [𝑋 / 𝑥]𝜒 → ¬ 𝜓)) |
| 66 | 65 | anim2d 612 |
. . . . . . . 8
⊢ (𝜑 → ((𝜓 ∧ ¬ [𝑋 / 𝑥]𝜒) → (𝜓 ∧ ¬ 𝜓))) |
| 67 | 27, 66 | mtoi 199 |
. . . . . . 7
⊢ (𝜑 → ¬ (𝜓 ∧ ¬ [𝑋 / 𝑥]𝜒)) |
| 68 | 67 | pm2.21d 121 |
. . . . . 6
⊢ (𝜑 → ((𝜓 ∧ ¬ [𝑋 / 𝑥]𝜒) → 𝑎 = ⦋𝑋 / 𝑥⦌𝐵)) |
| 69 | 68 | expdimp 452 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → (¬ [𝑋 / 𝑥]𝜒 → 𝑎 = ⦋𝑋 / 𝑥⦌𝐵)) |
| 70 | | nfcvd 2906 |
. . . . . . . . . 10
⊢ (𝑌 ∈ 𝑉 → Ⅎ𝑥𝑎) |
| 71 | | ifeqeqx.2 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑌 → 𝐵 = 𝑎) |
| 72 | 70, 71 | csbiegf 3932 |
. . . . . . . . 9
⊢ (𝑌 ∈ 𝑉 → ⦋𝑌 / 𝑥⦌𝐵 = 𝑎) |
| 73 | 28, 72 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ⦋𝑌 / 𝑥⦌𝐵 = 𝑎) |
| 74 | 73 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝜓) → ⦋𝑌 / 𝑥⦌𝐵 = 𝑎) |
| 75 | 74 | eqcomd 2743 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝜓) → 𝑎 = ⦋𝑌 / 𝑥⦌𝐵) |
| 76 | 75 | a1d 25 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝜓) → (¬ [𝑌 / 𝑥]𝜒 → 𝑎 = ⦋𝑌 / 𝑥⦌𝐵)) |
| 77 | 53, 57, 69, 76 | ifbothda 4564 |
. . . 4
⊢ (𝜑 → (¬ [if(𝜓, 𝑋, 𝑌) / 𝑥]𝜒 → 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵)) |
| 78 | 45, 49, 77 | sylc 65 |
. . 3
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ ¬ 𝜒) → 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵) |
| 79 | | csbeq1a 3913 |
. . . . 5
⊢ (𝑥 = if(𝜓, 𝑋, 𝑌) → 𝐵 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵) |
| 80 | 79 | eqeq2d 2748 |
. . . 4
⊢ (𝑥 = if(𝜓, 𝑋, 𝑌) → (𝑎 = 𝐵 ↔ 𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵)) |
| 81 | 80 | biimprd 248 |
. . 3
⊢ (𝑥 = if(𝜓, 𝑋, 𝑌) → (𝑎 = ⦋if(𝜓, 𝑋, 𝑌) / 𝑥⦌𝐵 → 𝑎 = 𝐵)) |
| 82 | 44, 78, 81 | sylc 65 |
. 2
⊢ (((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) ∧ ¬ 𝜒) → 𝑎 = 𝐵) |
| 83 | 1, 2, 43, 82 | ifbothda 4564 |
1
⊢ ((𝜑 ∧ 𝑥 = if(𝜓, 𝑋, 𝑌)) → 𝑎 = if(𝜒, 𝐴, 𝐵)) |