![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nndomog | Structured version Visualization version GIF version |
Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9264 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9264. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5369. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
nndomog | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnfi 9198 | . . . . . . 7 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
2 | domnsymfi 9234 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) | |
3 | 1, 2 | sylan 578 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
4 | 3 | ex 411 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
5 | php2 9242 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
6 | 5 | ex 411 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
7 | 4, 6 | nsyld 156 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
8 | 7 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
9 | nnord 7884 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
10 | eloni 6384 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
11 | ordtri1 6407 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
12 | ordelpss 6402 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) | |
13 | 12 | ancoms 457 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) |
14 | 13 | notbid 317 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴)) |
15 | 11, 14 | bitrd 278 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
16 | 9, 10, 15 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
17 | 8, 16 | sylibrd 258 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
18 | ssdomfi2 9231 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) | |
19 | 18 | 3expia 1118 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
20 | 1, 19 | sylan 578 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
21 | 17, 20 | impbid 211 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3949 ⊊ wpss 3950 class class class wbr 5152 Ord word 6373 Oncon0 6374 ωcom 7876 ≼ cdom 8968 ≺ csdm 8969 Fincfn 8970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-om 7877 df-1o 8493 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 |
This theorem is referenced by: onomeneq 9259 nndomo 9264 harsucnn 10029 |
Copyright terms: Public domain | W3C validator |