![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nndomog | Structured version Visualization version GIF version |
Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9184 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9184. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5325. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
nndomog | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnfi 9118 | . . . . . . 7 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
2 | domnsymfi 9154 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) | |
3 | 1, 2 | sylan 581 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
4 | 3 | ex 414 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
5 | php2 9162 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
6 | 5 | ex 414 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
7 | 4, 6 | nsyld 156 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
8 | 7 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
9 | nnord 7815 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
10 | eloni 6332 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
11 | ordtri1 6355 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
12 | ordelpss 6350 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) | |
13 | 12 | ancoms 460 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) |
14 | 13 | notbid 318 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴)) |
15 | 11, 14 | bitrd 279 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
16 | 9, 10, 15 | syl2an 597 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
17 | 8, 16 | sylibrd 259 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
18 | ssdomfi2 9151 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) | |
19 | 18 | 3expia 1122 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
20 | 1, 19 | sylan 581 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
21 | 17, 20 | impbid 211 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3915 ⊊ wpss 3916 class class class wbr 5110 Ord word 6321 Oncon0 6322 ωcom 7807 ≼ cdom 8888 ≺ csdm 8889 Fincfn 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-om 7808 df-1o 8417 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 |
This theorem is referenced by: onomeneq 9179 nndomo 9184 harsucnn 9941 |
Copyright terms: Public domain | W3C validator |