MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndomog Structured version   Visualization version   GIF version

Theorem nndomog 9215
Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9232 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9232. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5356. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
nndomog ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nndomog
StepHypRef Expression
1 nnfi 9166 . . . . . . 7 (𝐴 ∈ ω → 𝐴 ∈ Fin)
2 domnsymfi 9202 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
31, 2sylan 579 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
43ex 412 . . . . 5 (𝐴 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
5 php2 9210 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
65ex 412 . . . . 5 (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
74, 6nsyld 156 . . . 4 (𝐴 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
87adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵 → ¬ 𝐵𝐴))
9 nnord 7859 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
10 eloni 6367 . . . 4 (𝐵 ∈ On → Ord 𝐵)
11 ordtri1 6390 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
12 ordelpss 6385 . . . . . . 7 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
1312ancoms 458 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
1413notbid 318 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴))
1511, 14bitrd 279 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
169, 10, 15syl2an 595 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
178, 16sylibrd 259 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
18 ssdomfi2 9199 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴𝐵)
19183expia 1118 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
201, 19sylan 579 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
2117, 20impbid 211 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2098  wss 3943  wpss 3944   class class class wbr 5141  Ord word 6356  Oncon0 6357  ωcom 7851  cdom 8936  csdm 8937  Fincfn 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7852  df-1o 8464  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942
This theorem is referenced by:  onomeneq  9227  nndomo  9232  harsucnn  9992
  Copyright terms: Public domain W3C validator