| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nndomog | Structured version Visualization version GIF version | ||
| Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9187 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9187. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5323. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| nndomog | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnfi 9137 | . . . . . . 7 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 2 | domnsymfi 9170 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) | |
| 3 | 1, 2 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| 4 | 3 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
| 5 | php2 9178 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
| 6 | 5 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
| 7 | 4, 6 | nsyld 156 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
| 9 | nnord 7853 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 10 | eloni 6345 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 11 | ordtri1 6368 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 12 | ordelpss 6363 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) | |
| 13 | 12 | ancoms 458 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) |
| 14 | 13 | notbid 318 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴)) |
| 15 | 11, 14 | bitrd 279 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
| 16 | 9, 10, 15 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
| 17 | 8, 16 | sylibrd 259 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 18 | ssdomfi2 9167 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) | |
| 19 | 18 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| 20 | 1, 19 | sylan 580 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| 21 | 17, 20 | impbid 212 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 ⊊ wpss 3918 class class class wbr 5110 Ord word 6334 Oncon0 6335 ωcom 7845 ≼ cdom 8919 ≺ csdm 8920 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 |
| This theorem is referenced by: onomeneq 9184 nndomo 9187 harsucnn 9958 |
| Copyright terms: Public domain | W3C validator |