![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nndomog | Structured version Visualization version GIF version |
Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9233 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9233. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5364. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
nndomog | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnfi 9167 | . . . . . . 7 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
2 | domnsymfi 9203 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) | |
3 | 1, 2 | sylan 581 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
4 | 3 | ex 414 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
5 | php2 9211 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
6 | 5 | ex 414 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
7 | 4, 6 | nsyld 156 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
8 | 7 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
9 | nnord 7863 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
10 | eloni 6375 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
11 | ordtri1 6398 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
12 | ordelpss 6393 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) | |
13 | 12 | ancoms 460 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) |
14 | 13 | notbid 318 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴)) |
15 | 11, 14 | bitrd 279 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
16 | 9, 10, 15 | syl2an 597 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
17 | 8, 16 | sylibrd 259 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
18 | ssdomfi2 9200 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) | |
19 | 18 | 3expia 1122 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
20 | 1, 19 | sylan 581 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
21 | 17, 20 | impbid 211 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3949 ⊊ wpss 3950 class class class wbr 5149 Ord word 6364 Oncon0 6365 ωcom 7855 ≼ cdom 8937 ≺ csdm 8938 Fincfn 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7856 df-1o 8466 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 |
This theorem is referenced by: onomeneq 9228 nndomo 9233 harsucnn 9993 |
Copyright terms: Public domain | W3C validator |