MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndomog Structured version   Visualization version   GIF version

Theorem nndomog 8999
Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9016 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9016. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5288. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
nndomog ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nndomog
StepHypRef Expression
1 nnfi 8950 . . . . . . 7 (𝐴 ∈ ω → 𝐴 ∈ Fin)
2 domnsymfi 8986 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
31, 2sylan 580 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
43ex 413 . . . . 5 (𝐴 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
5 php2 8994 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
65ex 413 . . . . 5 (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
74, 6nsyld 156 . . . 4 (𝐴 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
87adantr 481 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵 → ¬ 𝐵𝐴))
9 nnord 7720 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
10 eloni 6276 . . . 4 (𝐵 ∈ On → Ord 𝐵)
11 ordtri1 6299 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
12 ordelpss 6294 . . . . . . 7 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
1312ancoms 459 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
1413notbid 318 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴))
1511, 14bitrd 278 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
169, 10, 15syl2an 596 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
178, 16sylibrd 258 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
18 ssdomfi2 8983 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴𝐵)
19183expia 1120 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
201, 19sylan 580 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
2117, 20impbid 211 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  wss 3887  wpss 3888   class class class wbr 5074  Ord word 6265  Oncon0 6266  ωcom 7712  cdom 8731  csdm 8732  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by:  onomeneq  9011  nndomo  9016  harsucnn  9756
  Copyright terms: Public domain W3C validator