MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltn2lp Structured version   Visualization version   GIF version

Theorem pltn2lp 18059
Description: The less-than relation has no 2-cycle loops. (pssn2lp 4036 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b 𝐵 = (Base‘𝐾)
pltnlt.s < = (lt‘𝐾)
Assertion
Ref Expression
pltn2lp ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))

Proof of Theorem pltn2lp
StepHypRef Expression
1 pltnlt.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
3 pltnlt.s . . . . 5 < = (lt‘𝐾)
41, 2, 3pltnle 18056 . . . 4 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌(le‘𝐾)𝑋)
54ex 413 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ¬ 𝑌(le‘𝐾)𝑋))
62, 3pltle 18051 . . . 4 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑋𝐵) → (𝑌 < 𝑋𝑌(le‘𝐾)𝑋))
763com23 1125 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑌 < 𝑋𝑌(le‘𝐾)𝑋))
85, 7nsyld 156 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 < 𝑋))
9 imnan 400 . 2 ((𝑋 < 𝑌 → ¬ 𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌𝑌 < 𝑋))
108, 9sylib 217 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  Posetcpo 18025  ltcplt 18026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-proset 18013  df-poset 18031  df-plt 18048
This theorem is referenced by:  plttr  18060
  Copyright terms: Public domain W3C validator