MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltn2lp Structured version   Visualization version   GIF version

Theorem pltn2lp 18263
Description: The less-than relation has no 2-cycle loops. (pssn2lp 4057 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b 𝐵 = (Base‘𝐾)
pltnlt.s < = (lt‘𝐾)
Assertion
Ref Expression
pltn2lp ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))

Proof of Theorem pltn2lp
StepHypRef Expression
1 pltnlt.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2729 . . . . 5 (le‘𝐾) = (le‘𝐾)
3 pltnlt.s . . . . 5 < = (lt‘𝐾)
41, 2, 3pltnle 18260 . . . 4 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌(le‘𝐾)𝑋)
54ex 412 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ¬ 𝑌(le‘𝐾)𝑋))
62, 3pltle 18255 . . . 4 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑋𝐵) → (𝑌 < 𝑋𝑌(le‘𝐾)𝑋))
763com23 1126 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑌 < 𝑋𝑌(le‘𝐾)𝑋))
85, 7nsyld 156 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 < 𝑋))
9 imnan 399 . 2 ((𝑋 < 𝑌 → ¬ 𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌𝑌 < 𝑋))
108, 9sylib 218 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  Basecbs 17138  lecple 17186  Posetcpo 18231  ltcplt 18232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-proset 18218  df-poset 18237  df-plt 18252
This theorem is referenced by:  plttr  18264
  Copyright terms: Public domain W3C validator