Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pltn2lp | Structured version Visualization version GIF version |
Description: The less-than relation has no 2-cycle loops. (pssn2lp 4016 analog.) (Contributed by NM, 2-Dec-2011.) |
Ref | Expression |
---|---|
pltnlt.b | ⊢ 𝐵 = (Base‘𝐾) |
pltnlt.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltn2lp | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltnlt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2737 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | pltnlt.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
4 | 1, 2, 3 | pltnle 17844 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌(le‘𝐾)𝑋) |
5 | 4 | ex 416 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌(le‘𝐾)𝑋)) |
6 | 2, 3 | pltle 17839 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 < 𝑋 → 𝑌(le‘𝐾)𝑋)) |
7 | 6 | 3com23 1128 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 < 𝑋 → 𝑌(le‘𝐾)𝑋)) |
8 | 5, 7 | nsyld 159 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 < 𝑋)) |
9 | imnan 403 | . 2 ⊢ ((𝑋 < 𝑌 → ¬ 𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) | |
10 | 8, 9 | sylib 221 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 Basecbs 16760 lecple 16809 Posetcpo 17814 ltcplt 17815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-proset 17802 df-poset 17820 df-plt 17836 |
This theorem is referenced by: plttr 17848 |
Copyright terms: Public domain | W3C validator |