MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2eucrct Structured version   Visualization version   GIF version

Theorem eupth2eucrct 28006
Description: Append one path segment to an Eulerian path 𝐹, 𝑃 which may not be an (Eulerian) circuit to become an Eulerian circuit 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by AV, 11-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) (Revised by AV, 8-Apr-2024.)
Hypotheses
Ref Expression
eupthp1.v 𝑉 = (Vtx‘𝐺)
eupthp1.i 𝐼 = (iEdg‘𝐺)
eupthp1.f (𝜑 → Fun 𝐼)
eupthp1.a (𝜑𝐼 ∈ Fin)
eupthp1.b (𝜑𝐵𝑊)
eupthp1.c (𝜑𝐶𝑉)
eupthp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
eupthp1.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthp1.n 𝑁 = (♯‘𝐹)
eupthp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
eupthp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
eupthp1.u (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
eupthp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
eupthp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
eupthp1.s (Vtx‘𝑆) = 𝑉
eupthp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
eupth2eucrct.c (𝜑𝐶 = (𝑃‘0))
Assertion
Ref Expression
eupth2eucrct (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))

Proof of Theorem eupth2eucrct
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupthp1.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupthp1.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthp1.f . . 3 (𝜑 → Fun 𝐼)
4 eupthp1.a . . 3 (𝜑𝐼 ∈ Fin)
5 eupthp1.b . . 3 (𝜑𝐵𝑊)
6 eupthp1.c . . 3 (𝜑𝐶𝑉)
7 eupthp1.d . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 eupthp1.p . . 3 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
9 eupthp1.n . . 3 𝑁 = (♯‘𝐹)
10 eupthp1.e . . 3 (𝜑𝐸 ∈ (Edg‘𝐺))
11 eupthp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
12 eupthp1.u . . 3 (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
13 eupthp1.h . . 3 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
14 eupthp1.q . . 3 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
15 eupthp1.s . . 3 (Vtx‘𝑆) = 𝑉
16 eupthp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16eupthp1 28005 . 2 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
18 simpr 488 . . 3 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(EulerPaths‘𝑆)𝑄)
19 eupthistrl 28000 . . . . 5 (𝐻(EulerPaths‘𝑆)𝑄𝐻(Trails‘𝑆)𝑄)
2019adantl 485 . . . 4 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Trails‘𝑆)𝑄)
21 fveq2 6649 . . . . . . . 8 (𝑘 = 0 → (𝑄𝑘) = (𝑄‘0))
22 fveq2 6649 . . . . . . . 8 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
2321, 22eqeq12d 2817 . . . . . . 7 (𝑘 = 0 → ((𝑄𝑘) = (𝑃𝑘) ↔ (𝑄‘0) = (𝑃‘0)))
24 eupthiswlk 28001 . . . . . . . . 9 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
258, 24syl 17 . . . . . . . 8 (𝜑𝐹(Walks‘𝐺)𝑃)
2612a1i 11 . . . . . . . 8 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
2715a1i 11 . . . . . . . 8 (𝜑 → (Vtx‘𝑆) = 𝑉)
281, 2, 3, 4, 5, 6, 7, 25, 9, 10, 11, 26, 13, 14, 27wlkp1lem5 27471 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
292wlkf 27408 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
3024, 29syl 17 . . . . . . . 8 (𝐹(EulerPaths‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
31 lencl 13880 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
329eleq1i 2883 . . . . . . . . . 10 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
33 0elfz 13003 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
3432, 33sylbir 238 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...𝑁))
3531, 34syl 17 . . . . . . . 8 (𝐹 ∈ Word dom 𝐼 → 0 ∈ (0...𝑁))
368, 30, 353syl 18 . . . . . . 7 (𝜑 → 0 ∈ (0...𝑁))
3723, 28, 36rspcdva 3576 . . . . . 6 (𝜑 → (𝑄‘0) = (𝑃‘0))
3837adantr 484 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑃‘0))
39 eupth2eucrct.c . . . . . . 7 (𝜑𝐶 = (𝑃‘0))
4039eqcomd 2807 . . . . . 6 (𝜑 → (𝑃‘0) = 𝐶)
4140adantr 484 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑃‘0) = 𝐶)
4214a1i 11 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}))
4313fveq2i 6652 . . . . . . . . 9 (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩}))
4443a1i 11 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})))
45 wrdfin 13879 . . . . . . . . . . . 12 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
4629, 45syl 17 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Fin)
478, 24, 463syl 18 . . . . . . . . . 10 (𝜑𝐹 ∈ Fin)
4847adantr 484 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐹 ∈ Fin)
49 snfi 8581 . . . . . . . . . 10 {⟨𝑁, 𝐵⟩} ∈ Fin
5049a1i 11 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → {⟨𝑁, 𝐵⟩} ∈ Fin)
51 wrddm 13868 . . . . . . . . . . . . 13 (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
528, 30, 513syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = (0..^(♯‘𝐹)))
53 fzonel 13050 . . . . . . . . . . . . . . . 16 ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))
5453a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
559eleq1i 2883 . . . . . . . . . . . . . . 15 (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
5654, 55sylnibr 332 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))
57 eleq2 2881 . . . . . . . . . . . . . . 15 (dom 𝐹 = (0..^(♯‘𝐹)) → (𝑁 ∈ dom 𝐹𝑁 ∈ (0..^(♯‘𝐹))))
5857notbid 321 . . . . . . . . . . . . . 14 (dom 𝐹 = (0..^(♯‘𝐹)) → (¬ 𝑁 ∈ dom 𝐹 ↔ ¬ 𝑁 ∈ (0..^(♯‘𝐹))))
5956, 58syl5ibrcom 250 . . . . . . . . . . . . 13 (𝜑 → (dom 𝐹 = (0..^(♯‘𝐹)) → ¬ 𝑁 ∈ dom 𝐹))
609fvexi 6663 . . . . . . . . . . . . . . 15 𝑁 ∈ V
6160a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ V)
6261, 5opeldmd 5743 . . . . . . . . . . . . 13 (𝜑 → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ dom 𝐹))
6359, 62nsyld 159 . . . . . . . . . . . 12 (𝜑 → (dom 𝐹 = (0..^(♯‘𝐹)) → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹))
6452, 63mpd 15 . . . . . . . . . . 11 (𝜑 → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
6564adantr 484 . . . . . . . . . 10 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
66 disjsn 4610 . . . . . . . . . 10 ((𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
6765, 66sylibr 237 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅)
68 hashun 13743 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ {⟨𝑁, 𝐵⟩} ∈ Fin ∧ (𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})))
6948, 50, 67, 68syl3anc 1368 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})))
709eqcomi 2810 . . . . . . . . . 10 (♯‘𝐹) = 𝑁
71 opex 5324 . . . . . . . . . . 11 𝑁, 𝐵⟩ ∈ V
72 hashsng 13730 . . . . . . . . . . 11 (⟨𝑁, 𝐵⟩ ∈ V → (♯‘{⟨𝑁, 𝐵⟩}) = 1)
7371, 72ax-mp 5 . . . . . . . . . 10 (♯‘{⟨𝑁, 𝐵⟩}) = 1
7470, 73oveq12i 7151 . . . . . . . . 9 ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})) = (𝑁 + 1)
7574a1i 11 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})) = (𝑁 + 1))
7644, 69, 753eqtrd 2840 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘𝐻) = (𝑁 + 1))
7742, 76fveq12d 6656 . . . . . 6 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘(♯‘𝐻)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)))
78 ovexd 7174 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ V)
791, 2, 3, 4, 5, 6, 7, 25, 9wlkp1lem1 27467 . . . . . . . . 9 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
8078, 6, 793jca 1125 . . . . . . . 8 (𝜑 → ((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃))
8180adantr 484 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃))
82 fsnunfv 6930 . . . . . . 7 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
8381, 82syl 17 . . . . . 6 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
8477, 83eqtr2d 2837 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐶 = (𝑄‘(♯‘𝐻)))
8538, 41, 843eqtrd 2840 . . . 4 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑄‘(♯‘𝐻)))
86 iscrct 27583 . . . 4 (𝐻(Circuits‘𝑆)𝑄 ↔ (𝐻(Trails‘𝑆)𝑄 ∧ (𝑄‘0) = (𝑄‘(♯‘𝐻))))
8720, 85, 86sylanbrc 586 . . 3 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Circuits‘𝑆)𝑄)
8818, 87jca 515 . 2 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))
8917, 88mpdan 686 1 (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  Vcvv 3444  cun 3882  cin 3883  wss 3884  c0 4246  {csn 4528  {cpr 4530  cop 4534   class class class wbr 5033  dom cdm 5523  Fun wfun 6322  cfv 6328  (class class class)co 7139  Fincfn 8496  0cc0 10530  1c1 10531   + caddc 10533  0cn0 11889  ...cfz 12889  ..^cfzo 13032  chash 13690  Word cword 13861  Vtxcvtx 26793  iEdgciedg 26794  Edgcedg 26844  Walkscwlks 27390  Trailsctrls 27484  Circuitsccrcts 27577  EulerPathsceupth 27986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-wlks 27393  df-trls 27486  df-crcts 27579  df-eupth 27987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator