MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2eucrct Structured version   Visualization version   GIF version

Theorem eupth2eucrct 29161
Description: Append one path segment to an Eulerian path 𝐹, 𝑃 which may not be an (Eulerian) circuit to become an Eulerian circuit 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by AV, 11-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) (Revised by AV, 8-Apr-2024.)
Hypotheses
Ref Expression
eupthp1.v 𝑉 = (Vtx‘𝐺)
eupthp1.i 𝐼 = (iEdg‘𝐺)
eupthp1.f (𝜑 → Fun 𝐼)
eupthp1.a (𝜑𝐼 ∈ Fin)
eupthp1.b (𝜑𝐵𝑊)
eupthp1.c (𝜑𝐶𝑉)
eupthp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
eupthp1.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthp1.n 𝑁 = (♯‘𝐹)
eupthp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
eupthp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
eupthp1.u (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
eupthp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
eupthp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
eupthp1.s (Vtx‘𝑆) = 𝑉
eupthp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
eupth2eucrct.c (𝜑𝐶 = (𝑃‘0))
Assertion
Ref Expression
eupth2eucrct (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))

Proof of Theorem eupth2eucrct
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupthp1.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupthp1.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthp1.f . . 3 (𝜑 → Fun 𝐼)
4 eupthp1.a . . 3 (𝜑𝐼 ∈ Fin)
5 eupthp1.b . . 3 (𝜑𝐵𝑊)
6 eupthp1.c . . 3 (𝜑𝐶𝑉)
7 eupthp1.d . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 eupthp1.p . . 3 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
9 eupthp1.n . . 3 𝑁 = (♯‘𝐹)
10 eupthp1.e . . 3 (𝜑𝐸 ∈ (Edg‘𝐺))
11 eupthp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
12 eupthp1.u . . 3 (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
13 eupthp1.h . . 3 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
14 eupthp1.q . . 3 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
15 eupthp1.s . . 3 (Vtx‘𝑆) = 𝑉
16 eupthp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16eupthp1 29160 . 2 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
18 simpr 485 . . 3 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(EulerPaths‘𝑆)𝑄)
19 eupthistrl 29155 . . . . 5 (𝐻(EulerPaths‘𝑆)𝑄𝐻(Trails‘𝑆)𝑄)
2019adantl 482 . . . 4 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Trails‘𝑆)𝑄)
21 fveq2 6842 . . . . . . . 8 (𝑘 = 0 → (𝑄𝑘) = (𝑄‘0))
22 fveq2 6842 . . . . . . . 8 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
2321, 22eqeq12d 2752 . . . . . . 7 (𝑘 = 0 → ((𝑄𝑘) = (𝑃𝑘) ↔ (𝑄‘0) = (𝑃‘0)))
24 eupthiswlk 29156 . . . . . . . . 9 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
258, 24syl 17 . . . . . . . 8 (𝜑𝐹(Walks‘𝐺)𝑃)
2612a1i 11 . . . . . . . 8 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
2715a1i 11 . . . . . . . 8 (𝜑 → (Vtx‘𝑆) = 𝑉)
281, 2, 3, 4, 5, 6, 7, 25, 9, 10, 11, 26, 13, 14, 27wlkp1lem5 28625 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
292wlkf 28562 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
3024, 29syl 17 . . . . . . . 8 (𝐹(EulerPaths‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
31 lencl 14421 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
329eleq1i 2828 . . . . . . . . . 10 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
33 0elfz 13538 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
3432, 33sylbir 234 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...𝑁))
3531, 34syl 17 . . . . . . . 8 (𝐹 ∈ Word dom 𝐼 → 0 ∈ (0...𝑁))
368, 30, 353syl 18 . . . . . . 7 (𝜑 → 0 ∈ (0...𝑁))
3723, 28, 36rspcdva 3582 . . . . . 6 (𝜑 → (𝑄‘0) = (𝑃‘0))
3837adantr 481 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑃‘0))
39 eupth2eucrct.c . . . . . . 7 (𝜑𝐶 = (𝑃‘0))
4039eqcomd 2742 . . . . . 6 (𝜑 → (𝑃‘0) = 𝐶)
4140adantr 481 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑃‘0) = 𝐶)
4214a1i 11 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}))
4313fveq2i 6845 . . . . . . . . 9 (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩}))
4443a1i 11 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})))
45 wrdfin 14420 . . . . . . . . . . . 12 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
4629, 45syl 17 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Fin)
478, 24, 463syl 18 . . . . . . . . . 10 (𝜑𝐹 ∈ Fin)
4847adantr 481 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐹 ∈ Fin)
49 snfi 8988 . . . . . . . . . 10 {⟨𝑁, 𝐵⟩} ∈ Fin
5049a1i 11 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → {⟨𝑁, 𝐵⟩} ∈ Fin)
51 wrddm 14409 . . . . . . . . . . . . 13 (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
528, 30, 513syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = (0..^(♯‘𝐹)))
53 fzonel 13586 . . . . . . . . . . . . . . . 16 ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))
5453a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
559eleq1i 2828 . . . . . . . . . . . . . . 15 (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
5654, 55sylnibr 328 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))
57 eleq2 2826 . . . . . . . . . . . . . . 15 (dom 𝐹 = (0..^(♯‘𝐹)) → (𝑁 ∈ dom 𝐹𝑁 ∈ (0..^(♯‘𝐹))))
5857notbid 317 . . . . . . . . . . . . . 14 (dom 𝐹 = (0..^(♯‘𝐹)) → (¬ 𝑁 ∈ dom 𝐹 ↔ ¬ 𝑁 ∈ (0..^(♯‘𝐹))))
5956, 58syl5ibrcom 246 . . . . . . . . . . . . 13 (𝜑 → (dom 𝐹 = (0..^(♯‘𝐹)) → ¬ 𝑁 ∈ dom 𝐹))
609fvexi 6856 . . . . . . . . . . . . . . 15 𝑁 ∈ V
6160a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ V)
6261, 5opeldmd 5862 . . . . . . . . . . . . 13 (𝜑 → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ dom 𝐹))
6359, 62nsyld 156 . . . . . . . . . . . 12 (𝜑 → (dom 𝐹 = (0..^(♯‘𝐹)) → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹))
6452, 63mpd 15 . . . . . . . . . . 11 (𝜑 → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
6564adantr 481 . . . . . . . . . 10 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
66 disjsn 4672 . . . . . . . . . 10 ((𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
6765, 66sylibr 233 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅)
68 hashun 14282 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ {⟨𝑁, 𝐵⟩} ∈ Fin ∧ (𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})))
6948, 50, 67, 68syl3anc 1371 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})))
709eqcomi 2745 . . . . . . . . . 10 (♯‘𝐹) = 𝑁
71 opex 5421 . . . . . . . . . . 11 𝑁, 𝐵⟩ ∈ V
72 hashsng 14269 . . . . . . . . . . 11 (⟨𝑁, 𝐵⟩ ∈ V → (♯‘{⟨𝑁, 𝐵⟩}) = 1)
7371, 72ax-mp 5 . . . . . . . . . 10 (♯‘{⟨𝑁, 𝐵⟩}) = 1
7470, 73oveq12i 7369 . . . . . . . . 9 ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})) = (𝑁 + 1)
7574a1i 11 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})) = (𝑁 + 1))
7644, 69, 753eqtrd 2780 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘𝐻) = (𝑁 + 1))
7742, 76fveq12d 6849 . . . . . 6 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘(♯‘𝐻)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)))
78 ovexd 7392 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ V)
791, 2, 3, 4, 5, 6, 7, 25, 9wlkp1lem1 28621 . . . . . . . . 9 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
8078, 6, 793jca 1128 . . . . . . . 8 (𝜑 → ((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃))
8180adantr 481 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃))
82 fsnunfv 7133 . . . . . . 7 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
8381, 82syl 17 . . . . . 6 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
8477, 83eqtr2d 2777 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐶 = (𝑄‘(♯‘𝐻)))
8538, 41, 843eqtrd 2780 . . . 4 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑄‘(♯‘𝐻)))
86 iscrct 28738 . . . 4 (𝐻(Circuits‘𝑆)𝑄 ↔ (𝐻(Trails‘𝑆)𝑄 ∧ (𝑄‘0) = (𝑄‘(♯‘𝐻))))
8720, 85, 86sylanbrc 583 . . 3 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Circuits‘𝑆)𝑄)
8818, 87jca 512 . 2 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))
8917, 88mpdan 685 1 (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908  cin 3909  wss 3910  c0 4282  {csn 4586  {cpr 4588  cop 4592   class class class wbr 5105  dom cdm 5633  Fun wfun 6490  cfv 6496  (class class class)co 7357  Fincfn 8883  0cc0 11051  1c1 11052   + caddc 11054  0cn0 12413  ...cfz 13424  ..^cfzo 13567  chash 14230  Word cword 14402  Vtxcvtx 27947  iEdgciedg 27948  Edgcedg 27998  Walkscwlks 28544  Trailsctrls 28638  Circuitsccrcts 28732  EulerPathsceupth 29141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-wlks 28547  df-trls 28640  df-crcts 28734  df-eupth 29142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator