Step | Hyp | Ref
| Expression |
1 | | eupthp1.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | eupthp1.i |
. . 3
⊢ 𝐼 = (iEdg‘𝐺) |
3 | | eupthp1.f |
. . 3
⊢ (𝜑 → Fun 𝐼) |
4 | | eupthp1.a |
. . 3
⊢ (𝜑 → 𝐼 ∈ Fin) |
5 | | eupthp1.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
6 | | eupthp1.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
7 | | eupthp1.d |
. . 3
⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
8 | | eupthp1.p |
. . 3
⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
9 | | eupthp1.n |
. . 3
⊢ 𝑁 = (♯‘𝐹) |
10 | | eupthp1.e |
. . 3
⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
11 | | eupthp1.x |
. . 3
⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
12 | | eupthp1.u |
. . 3
⊢
(iEdg‘𝑆) =
(𝐼 ∪ {〈𝐵, 𝐸〉}) |
13 | | eupthp1.h |
. . 3
⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
14 | | eupthp1.q |
. . 3
⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
15 | | eupthp1.s |
. . 3
⊢
(Vtx‘𝑆) =
𝑉 |
16 | | eupthp1.l |
. . 3
⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16 | eupthp1 28580 |
. 2
⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
18 | | simpr 485 |
. . 3
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(EulerPaths‘𝑆)𝑄) |
19 | | eupthistrl 28575 |
. . . . 5
⊢ (𝐻(EulerPaths‘𝑆)𝑄 → 𝐻(Trails‘𝑆)𝑄) |
20 | 19 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Trails‘𝑆)𝑄) |
21 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 0 → (𝑄‘𝑘) = (𝑄‘0)) |
22 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) |
23 | 21, 22 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑘 = 0 → ((𝑄‘𝑘) = (𝑃‘𝑘) ↔ (𝑄‘0) = (𝑃‘0))) |
24 | | eupthiswlk 28576 |
. . . . . . . . 9
⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
25 | 8, 24 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
26 | 12 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
27 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
28 | 1, 2, 3, 4, 5, 6, 7, 25, 9, 10, 11, 26, 13, 14, 27 | wlkp1lem5 28045 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
29 | 2 | wlkf 27981 |
. . . . . . . . 9
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
30 | 24, 29 | syl 17 |
. . . . . . . 8
⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
31 | | lencl 14236 |
. . . . . . . . 9
⊢ (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈
ℕ0) |
32 | 9 | eleq1i 2829 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
↔ (♯‘𝐹)
∈ ℕ0) |
33 | | 0elfz 13353 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ (0...𝑁)) |
34 | 32, 33 | sylbir 234 |
. . . . . . . . 9
⊢
((♯‘𝐹)
∈ ℕ0 → 0 ∈ (0...𝑁)) |
35 | 31, 34 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ Word dom 𝐼 → 0 ∈ (0...𝑁)) |
36 | 8, 30, 35 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
37 | 23, 28, 36 | rspcdva 3562 |
. . . . . 6
⊢ (𝜑 → (𝑄‘0) = (𝑃‘0)) |
38 | 37 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑃‘0)) |
39 | | eupth2eucrct.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 = (𝑃‘0)) |
40 | 39 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → (𝑃‘0) = 𝐶) |
41 | 40 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → (𝑃‘0) = 𝐶) |
42 | 14 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})) |
43 | 13 | fveq2i 6777 |
. . . . . . . . 9
⊢
(♯‘𝐻) =
(♯‘(𝐹 ∪
{〈𝑁, 𝐵〉})) |
44 | 43 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → (♯‘𝐻) = (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉}))) |
45 | | wrdfin 14235 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin) |
46 | 29, 45 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Fin) |
47 | 8, 24, 46 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ Fin) |
48 | 47 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → 𝐹 ∈ Fin) |
49 | | snfi 8834 |
. . . . . . . . . 10
⊢
{〈𝑁, 𝐵〉} ∈
Fin |
50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → {〈𝑁, 𝐵〉} ∈ Fin) |
51 | | wrddm 14224 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹))) |
52 | 8, 30, 51 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐹 = (0..^(♯‘𝐹))) |
53 | | fzonel 13401 |
. . . . . . . . . . . . . . . 16
⊢ ¬
(♯‘𝐹) ∈
(0..^(♯‘𝐹)) |
54 | 53 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ (♯‘𝐹) ∈
(0..^(♯‘𝐹))) |
55 | 9 | eleq1i 2829 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(0..^(♯‘𝐹))
↔ (♯‘𝐹)
∈ (0..^(♯‘𝐹))) |
56 | 54, 55 | sylnibr 329 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹))) |
57 | | eleq2 2827 |
. . . . . . . . . . . . . . 15
⊢ (dom
𝐹 =
(0..^(♯‘𝐹))
→ (𝑁 ∈ dom 𝐹 ↔ 𝑁 ∈ (0..^(♯‘𝐹)))) |
58 | 57 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (dom
𝐹 =
(0..^(♯‘𝐹))
→ (¬ 𝑁 ∈ dom
𝐹 ↔ ¬ 𝑁 ∈
(0..^(♯‘𝐹)))) |
59 | 56, 58 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (dom 𝐹 = (0..^(♯‘𝐹)) → ¬ 𝑁 ∈ dom 𝐹)) |
60 | 9 | fvexi 6788 |
. . . . . . . . . . . . . . 15
⊢ 𝑁 ∈ V |
61 | 60 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ V) |
62 | 61, 5 | opeldmd 5815 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ dom 𝐹)) |
63 | 59, 62 | nsyld 156 |
. . . . . . . . . . . 12
⊢ (𝜑 → (dom 𝐹 = (0..^(♯‘𝐹)) → ¬ 〈𝑁, 𝐵〉 ∈ 𝐹)) |
64 | 52, 63 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) |
65 | 64 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) |
66 | | disjsn 4647 |
. . . . . . . . . 10
⊢ ((𝐹 ∩ {〈𝑁, 𝐵〉}) = ∅ ↔ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) |
67 | 65, 66 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → (𝐹 ∩ {〈𝑁, 𝐵〉}) = ∅) |
68 | | hashun 14097 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Fin ∧ {〈𝑁, 𝐵〉} ∈ Fin ∧ (𝐹 ∩ {〈𝑁, 𝐵〉}) = ∅) →
(♯‘(𝐹 ∪
{〈𝑁, 𝐵〉})) = ((♯‘𝐹) + (♯‘{〈𝑁, 𝐵〉}))) |
69 | 48, 50, 67, 68 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → (♯‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((♯‘𝐹) + (♯‘{〈𝑁, 𝐵〉}))) |
70 | 9 | eqcomi 2747 |
. . . . . . . . . 10
⊢
(♯‘𝐹) =
𝑁 |
71 | | opex 5379 |
. . . . . . . . . . 11
⊢
〈𝑁, 𝐵〉 ∈ V |
72 | | hashsng 14084 |
. . . . . . . . . . 11
⊢
(〈𝑁, 𝐵〉 ∈ V →
(♯‘{〈𝑁,
𝐵〉}) =
1) |
73 | 71, 72 | ax-mp 5 |
. . . . . . . . . 10
⊢
(♯‘{〈𝑁, 𝐵〉}) = 1 |
74 | 70, 73 | oveq12i 7287 |
. . . . . . . . 9
⊢
((♯‘𝐹) +
(♯‘{〈𝑁,
𝐵〉})) = (𝑁 + 1) |
75 | 74 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → ((♯‘𝐹) + (♯‘{〈𝑁, 𝐵〉})) = (𝑁 + 1)) |
76 | 44, 69, 75 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → (♯‘𝐻) = (𝑁 + 1)) |
77 | 42, 76 | fveq12d 6781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘(♯‘𝐻)) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1))) |
78 | | ovexd 7310 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈ V) |
79 | 1, 2, 3, 4, 5, 6, 7, 25, 9 | wlkp1lem1 28041 |
. . . . . . . . 9
⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
80 | 78, 6, 79 | 3jca 1127 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 + 1) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃)) |
81 | 80 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → ((𝑁 + 1) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃)) |
82 | | fsnunfv 7059 |
. . . . . . 7
⊢ (((𝑁 + 1) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) |
83 | 81, 82 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) |
84 | 77, 83 | eqtr2d 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → 𝐶 = (𝑄‘(♯‘𝐻))) |
85 | 38, 41, 84 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑄‘(♯‘𝐻))) |
86 | | iscrct 28158 |
. . . 4
⊢ (𝐻(Circuits‘𝑆)𝑄 ↔ (𝐻(Trails‘𝑆)𝑄 ∧ (𝑄‘0) = (𝑄‘(♯‘𝐻)))) |
87 | 20, 85, 86 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Circuits‘𝑆)𝑄) |
88 | 18, 87 | jca 512 |
. 2
⊢ ((𝜑 ∧ 𝐻(EulerPaths‘𝑆)𝑄) → (𝐻(EulerPaths‘𝑆)𝑄 ∧ 𝐻(Circuits‘𝑆)𝑄)) |
89 | 17, 88 | mpdan 684 |
1
⊢ (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ∧ 𝐻(Circuits‘𝑆)𝑄)) |