MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2eucrct Structured version   Visualization version   GIF version

Theorem eupth2eucrct 30236
Description: Append one path segment to an Eulerian path 𝐹, 𝑃 which may not be an (Eulerian) circuit to become an Eulerian circuit 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by AV, 11-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) (Revised by AV, 8-Apr-2024.)
Hypotheses
Ref Expression
eupthp1.v 𝑉 = (Vtx‘𝐺)
eupthp1.i 𝐼 = (iEdg‘𝐺)
eupthp1.f (𝜑 → Fun 𝐼)
eupthp1.a (𝜑𝐼 ∈ Fin)
eupthp1.b (𝜑𝐵𝑊)
eupthp1.c (𝜑𝐶𝑉)
eupthp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
eupthp1.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthp1.n 𝑁 = (♯‘𝐹)
eupthp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
eupthp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
eupthp1.u (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
eupthp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
eupthp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
eupthp1.s (Vtx‘𝑆) = 𝑉
eupthp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
eupth2eucrct.c (𝜑𝐶 = (𝑃‘0))
Assertion
Ref Expression
eupth2eucrct (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))

Proof of Theorem eupth2eucrct
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupthp1.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupthp1.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthp1.f . . 3 (𝜑 → Fun 𝐼)
4 eupthp1.a . . 3 (𝜑𝐼 ∈ Fin)
5 eupthp1.b . . 3 (𝜑𝐵𝑊)
6 eupthp1.c . . 3 (𝜑𝐶𝑉)
7 eupthp1.d . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 eupthp1.p . . 3 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
9 eupthp1.n . . 3 𝑁 = (♯‘𝐹)
10 eupthp1.e . . 3 (𝜑𝐸 ∈ (Edg‘𝐺))
11 eupthp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
12 eupthp1.u . . 3 (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
13 eupthp1.h . . 3 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
14 eupthp1.q . . 3 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
15 eupthp1.s . . 3 (Vtx‘𝑆) = 𝑉
16 eupthp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16eupthp1 30235 . 2 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
18 simpr 484 . . 3 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(EulerPaths‘𝑆)𝑄)
19 eupthistrl 30230 . . . . 5 (𝐻(EulerPaths‘𝑆)𝑄𝐻(Trails‘𝑆)𝑄)
2019adantl 481 . . . 4 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Trails‘𝑆)𝑄)
21 fveq2 6906 . . . . . . . 8 (𝑘 = 0 → (𝑄𝑘) = (𝑄‘0))
22 fveq2 6906 . . . . . . . 8 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
2321, 22eqeq12d 2753 . . . . . . 7 (𝑘 = 0 → ((𝑄𝑘) = (𝑃𝑘) ↔ (𝑄‘0) = (𝑃‘0)))
24 eupthiswlk 30231 . . . . . . . . 9 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
258, 24syl 17 . . . . . . . 8 (𝜑𝐹(Walks‘𝐺)𝑃)
2612a1i 11 . . . . . . . 8 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
2715a1i 11 . . . . . . . 8 (𝜑 → (Vtx‘𝑆) = 𝑉)
281, 2, 3, 4, 5, 6, 7, 25, 9, 10, 11, 26, 13, 14, 27wlkp1lem5 29695 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
292wlkf 29632 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
30 lencl 14571 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
319eleq1i 2832 . . . . . . . . . 10 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
32 0elfz 13664 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
3331, 32sylbir 235 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...𝑁))
3430, 33syl 17 . . . . . . . 8 (𝐹 ∈ Word dom 𝐼 → 0 ∈ (0...𝑁))
358, 24, 29, 344syl 19 . . . . . . 7 (𝜑 → 0 ∈ (0...𝑁))
3623, 28, 35rspcdva 3623 . . . . . 6 (𝜑 → (𝑄‘0) = (𝑃‘0))
3736adantr 480 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑃‘0))
38 eupth2eucrct.c . . . . . . 7 (𝜑𝐶 = (𝑃‘0))
3938eqcomd 2743 . . . . . 6 (𝜑 → (𝑃‘0) = 𝐶)
4039adantr 480 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑃‘0) = 𝐶)
4114a1i 11 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}))
4213fveq2i 6909 . . . . . . . . 9 (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩}))
4342a1i 11 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})))
44 wrdfin 14570 . . . . . . . . . . 11 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
458, 24, 29, 444syl 19 . . . . . . . . . 10 (𝜑𝐹 ∈ Fin)
4645adantr 480 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐹 ∈ Fin)
47 snfi 9083 . . . . . . . . . 10 {⟨𝑁, 𝐵⟩} ∈ Fin
4847a1i 11 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → {⟨𝑁, 𝐵⟩} ∈ Fin)
49 wrddm 14559 . . . . . . . . . . . . 13 (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
508, 24, 29, 494syl 19 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = (0..^(♯‘𝐹)))
51 fzonel 13713 . . . . . . . . . . . . . . . 16 ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))
5251a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
539eleq1i 2832 . . . . . . . . . . . . . . 15 (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
5452, 53sylnibr 329 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))
55 eleq2 2830 . . . . . . . . . . . . . . 15 (dom 𝐹 = (0..^(♯‘𝐹)) → (𝑁 ∈ dom 𝐹𝑁 ∈ (0..^(♯‘𝐹))))
5655notbid 318 . . . . . . . . . . . . . 14 (dom 𝐹 = (0..^(♯‘𝐹)) → (¬ 𝑁 ∈ dom 𝐹 ↔ ¬ 𝑁 ∈ (0..^(♯‘𝐹))))
5754, 56syl5ibrcom 247 . . . . . . . . . . . . 13 (𝜑 → (dom 𝐹 = (0..^(♯‘𝐹)) → ¬ 𝑁 ∈ dom 𝐹))
589fvexi 6920 . . . . . . . . . . . . . . 15 𝑁 ∈ V
5958a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ V)
6059, 5opeldmd 5917 . . . . . . . . . . . . 13 (𝜑 → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ dom 𝐹))
6157, 60nsyld 156 . . . . . . . . . . . 12 (𝜑 → (dom 𝐹 = (0..^(♯‘𝐹)) → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹))
6250, 61mpd 15 . . . . . . . . . . 11 (𝜑 → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
6362adantr 480 . . . . . . . . . 10 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
64 disjsn 4711 . . . . . . . . . 10 ((𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
6563, 64sylibr 234 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅)
66 hashun 14421 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ {⟨𝑁, 𝐵⟩} ∈ Fin ∧ (𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})))
6746, 48, 65, 66syl3anc 1373 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})))
689eqcomi 2746 . . . . . . . . . 10 (♯‘𝐹) = 𝑁
69 opex 5469 . . . . . . . . . . 11 𝑁, 𝐵⟩ ∈ V
70 hashsng 14408 . . . . . . . . . . 11 (⟨𝑁, 𝐵⟩ ∈ V → (♯‘{⟨𝑁, 𝐵⟩}) = 1)
7169, 70ax-mp 5 . . . . . . . . . 10 (♯‘{⟨𝑁, 𝐵⟩}) = 1
7268, 71oveq12i 7443 . . . . . . . . 9 ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})) = (𝑁 + 1)
7372a1i 11 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})) = (𝑁 + 1))
7443, 67, 733eqtrd 2781 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘𝐻) = (𝑁 + 1))
7541, 74fveq12d 6913 . . . . . 6 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘(♯‘𝐻)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)))
76 ovexd 7466 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ V)
771, 2, 3, 4, 5, 6, 7, 25, 9wlkp1lem1 29691 . . . . . . . . 9 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
7876, 6, 773jca 1129 . . . . . . . 8 (𝜑 → ((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃))
7978adantr 480 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃))
80 fsnunfv 7207 . . . . . . 7 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
8179, 80syl 17 . . . . . 6 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
8275, 81eqtr2d 2778 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐶 = (𝑄‘(♯‘𝐻)))
8337, 40, 823eqtrd 2781 . . . 4 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑄‘(♯‘𝐻)))
84 iscrct 29810 . . . 4 (𝐻(Circuits‘𝑆)𝑄 ↔ (𝐻(Trails‘𝑆)𝑄 ∧ (𝑄‘0) = (𝑄‘(♯‘𝐻))))
8520, 83, 84sylanbrc 583 . . 3 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Circuits‘𝑆)𝑄)
8618, 85jca 511 . 2 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))
8717, 86mpdan 687 1 (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626  {cpr 4628  cop 4632   class class class wbr 5143  dom cdm 5685  Fun wfun 6555  cfv 6561  (class class class)co 7431  Fincfn 8985  0cc0 11155  1c1 11156   + caddc 11158  0cn0 12526  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552  Vtxcvtx 29013  iEdgciedg 29014  Edgcedg 29064  Walkscwlks 29614  Trailsctrls 29708  Circuitsccrcts 29804  EulerPathsceupth 30216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-wlks 29617  df-trls 29710  df-crcts 29806  df-eupth 30217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator