MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsno Structured version   Visualization version   GIF version

Theorem onsno 28163
Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
onsno (𝐴 ∈ Ons𝐴 No )

Proof of Theorem onsno
StepHypRef Expression
1 onssno 28162 . 2 Ons No
21sseli 3950 1 (𝐴 ∈ Ons𝐴 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   No csur 27558  Onscons 28159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-ss 3939  df-ons 28160
This theorem is referenced by:  elons2  28166  sltonold  28169  onscutleft  28171  onscutlt  28172  onnolt  28174  onslt  28175  bdayon  28180  onaddscl  28181  onmulscl  28182  onsfi  28254
  Copyright terms: Public domain W3C validator