![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsno | Structured version Visualization version GIF version |
Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.) |
Ref | Expression |
---|---|
onsno | ⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssno 28295 | . 2 ⊢ Ons ⊆ No | |
2 | 1 | sseli 4004 | 1 ⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 No csur 27702 Onscons 28292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-ons 28293 |
This theorem is referenced by: elons2 28299 sltonold 28301 onscutleft 28303 onaddscl 28304 onmulscl 28305 |
Copyright terms: Public domain | W3C validator |