MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsno Structured version   Visualization version   GIF version

Theorem onsno 28293
Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
onsno (𝐴 ∈ Ons𝐴 No )

Proof of Theorem onsno
StepHypRef Expression
1 onssno 28292 . 2 Ons No
21sseli 3991 1 (𝐴 ∈ Ons𝐴 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   No csur 27699  Onscons 28289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-ss 3980  df-ons 28290
This theorem is referenced by:  elons2  28296  sltonold  28298  onscutleft  28300  onaddscl  28301  onmulscl  28302
  Copyright terms: Public domain W3C validator