MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsno Structured version   Visualization version   GIF version

Theorem onsno 28192
Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
onsno (𝐴 ∈ Ons𝐴 No )

Proof of Theorem onsno
StepHypRef Expression
1 onssno 28191 . 2 Ons No
21sseli 3925 1 (𝐴 ∈ Ons𝐴 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   No csur 27578  Onscons 28188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-ss 3914  df-ons 28189
This theorem is referenced by:  elons2  28195  sltonold  28198  onscutleft  28200  onscutlt  28201  onnolt  28203  onslt  28204  bdayon  28209  onaddscl  28210  onmulscl  28211  onsfi  28283
  Copyright terms: Public domain W3C validator