MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsno Structured version   Visualization version   GIF version

Theorem onsno 28296
Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
onsno (𝐴 ∈ Ons𝐴 No )

Proof of Theorem onsno
StepHypRef Expression
1 onssno 28295 . 2 Ons No
21sseli 4004 1 (𝐴 ∈ Ons𝐴 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   No csur 27702  Onscons 28292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-ss 3993  df-ons 28293
This theorem is referenced by:  elons2  28299  sltonold  28301  onscutleft  28303  onaddscl  28304  onmulscl  28305
  Copyright terms: Public domain W3C validator