![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsno | Structured version Visualization version GIF version |
Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.) |
Ref | Expression |
---|---|
onsno | ⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssno 28197 | . 2 ⊢ Ons ⊆ No | |
2 | 1 | sseli 3972 | 1 ⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 No csur 27618 Onscons 28194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-ss 3961 df-ons 28195 |
This theorem is referenced by: elons2 28201 sltonold 28203 onscutleft 28205 |
Copyright terms: Public domain | W3C validator |