| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsno | Structured version Visualization version GIF version | ||
| Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.) |
| Ref | Expression |
|---|---|
| onsno | ⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onssno 28191 | . 2 ⊢ Ons ⊆ No | |
| 2 | 1 | sseli 3925 | 1 ⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 No csur 27578 Onscons 28188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3914 df-ons 28189 |
| This theorem is referenced by: elons2 28195 sltonold 28198 onscutleft 28200 onscutlt 28201 onnolt 28203 onslt 28204 bdayon 28209 onaddscl 28210 onmulscl 28211 onsfi 28283 |
| Copyright terms: Public domain | W3C validator |