| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsno | Structured version Visualization version GIF version | ||
| Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.) |
| Ref | Expression |
|---|---|
| onsno | ⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onssno 28195 | . 2 ⊢ Ons ⊆ No | |
| 2 | 1 | sseli 3939 | 1 ⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 No csur 27584 Onscons 28192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-ss 3928 df-ons 28193 |
| This theorem is referenced by: elons2 28199 sltonold 28202 onscutleft 28204 onscutlt 28205 onnolt 28207 onslt 28208 bdayon 28213 onaddscl 28214 onmulscl 28215 onsfi 28287 |
| Copyright terms: Public domain | W3C validator |