MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsno Structured version   Visualization version   GIF version

Theorem onsno 28061
Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
onsno (𝐴 ∈ Ons𝐴 No )

Proof of Theorem onsno
StepHypRef Expression
1 onssno 28060 . 2 Ons No
21sseli 3978 1 (𝐴 ∈ Ons𝐴 No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105   No csur 27486  Onscons 28057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-in 3955  df-ss 3965  df-ons 28058
This theorem is referenced by:  elons2  28064  sltonold  28066  onscutleft  28068
  Copyright terms: Public domain W3C validator