Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuplub Structured version   Visualization version   GIF version

Theorem onsuplub 41997
Description: The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsuplub (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝐵 ∈ On) → (𝐵 𝐴 ↔ ∃𝑧𝐴 𝐵𝑧))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem onsuplub
StepHypRef Expression
1 eluni2 4913 . 2 (𝐵 𝐴 ↔ ∃𝑧𝐴 𝐵𝑧)
21a1i 11 1 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝐵 ∈ On) → (𝐵 𝐴 ↔ ∃𝑧𝐴 𝐵𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wrex 3071  wss 3949   cuni 4909  Oncon0 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rex 3072  df-v 3477  df-uni 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator