| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsuplub | Structured version Visualization version GIF version | ||
| Description: The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsuplub | ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ On) → (𝐵 ∈ ∪ 𝐴 ↔ ∃𝑧 ∈ 𝐴 𝐵 ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 4891 | . 2 ⊢ (𝐵 ∈ ∪ 𝐴 ↔ ∃𝑧 ∈ 𝐴 𝐵 ∈ 𝑧) | |
| 2 | 1 | a1i 11 | 1 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ On) → (𝐵 ∈ ∪ 𝐴 ↔ ∃𝑧 ∈ 𝐴 𝐵 ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3931 ∪ cuni 4887 Oncon0 6363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rex 3060 df-v 3465 df-uni 4888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |