Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuplub Structured version   Visualization version   GIF version

Theorem onsuplub 43253
Description: The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsuplub (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝐵 ∈ On) → (𝐵 𝐴 ↔ ∃𝑧𝐴 𝐵𝑧))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem onsuplub
StepHypRef Expression
1 eluni2 4919 . 2 (𝐵 𝐴 ↔ ∃𝑧𝐴 𝐵𝑧)
21a1i 11 1 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝐵 ∈ On) → (𝐵 𝐴 ↔ ∃𝑧𝐴 𝐵𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wrex 3070  wss 3966   cuni 4915  Oncon0 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-v 3483  df-uni 4916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator