| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsuplub | Structured version Visualization version GIF version | ||
| Description: The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsuplub | ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ On) → (𝐵 ∈ ∪ 𝐴 ↔ ∃𝑧 ∈ 𝐴 𝐵 ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 4860 | . 2 ⊢ (𝐵 ∈ ∪ 𝐴 ↔ ∃𝑧 ∈ 𝐴 𝐵 ∈ 𝑧) | |
| 2 | 1 | a1i 11 | 1 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ On) → (𝐵 ∈ ∪ 𝐴 ↔ ∃𝑧 ∈ 𝐴 𝐵 ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 ∪ cuni 4856 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-uni 4857 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |