Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuplub Structured version   Visualization version   GIF version

Theorem onsuplub 43209
Description: The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsuplub (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝐵 ∈ On) → (𝐵 𝐴 ↔ ∃𝑧𝐴 𝐵𝑧))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem onsuplub
StepHypRef Expression
1 eluni2 4883 . 2 (𝐵 𝐴 ↔ ∃𝑧𝐴 𝐵𝑧)
21a1i 11 1 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝐵 ∈ On) → (𝐵 𝐴 ↔ ∃𝑧𝐴 𝐵𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3055  wss 3922   cuni 4879  Oncon0 6340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3056  df-v 3457  df-uni 4880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator