Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupeqnmax Structured version   Visualization version   GIF version

Theorem onsupeqnmax 43286
Description: Condition when the supremum of a class of ordinals is not the maximum element of that class. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsupeqnmax (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem onsupeqnmax
StepHypRef Expression
1 simpl 482 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝐴 ⊆ On)
21sselda 3934 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ On)
3 ssel2 3929 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
43adantr 480 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ On)
5 ontri1 6340 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
62, 4, 5syl2anc 584 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
76ralbidva 3153 . . . . . 6 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥𝑦))
87rexbidva 3154 . . . . 5 (𝐴 ⊆ On → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦))
98notbid 318 . . . 4 (𝐴 ⊆ On → (¬ ∃𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦))
109bicomd 223 . . 3 (𝐴 ⊆ On → (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
11 dfrex2 3059 . . . . 5 (∃𝑦𝐴 𝑥𝑦 ↔ ¬ ∀𝑦𝐴 ¬ 𝑥𝑦)
1211ralbii 3078 . . . 4 (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥𝑦)
13 ralnex 3058 . . . 4 (∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
1412, 13bitri 275 . . 3 (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
15 unielid 43258 . . . 4 ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
1615notbii 320 . . 3 𝐴𝐴 ↔ ¬ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
1710, 14, 163bitr4g 314 . 2 (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ¬ 𝐴𝐴))
18 onsupnmax 43267 . . 3 (𝐴 ⊆ On → (¬ 𝐴𝐴 𝐴 = 𝐴))
1918pm4.71rd 562 . 2 (𝐴 ⊆ On → (¬ 𝐴𝐴 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴)))
2017, 19bitrd 279 1 (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902   cuni 4859  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310  df-suc 6312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator