Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupeqnmax Structured version   Visualization version   GIF version

Theorem onsupeqnmax 42588
Description: Condition when the supremum of a class of ordinals is not the maximum element of that class. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsupeqnmax (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem onsupeqnmax
StepHypRef Expression
1 simpl 482 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝐴 ⊆ On)
21sselda 3978 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ On)
3 ssel2 3973 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
43adantr 480 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ On)
5 ontri1 6397 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
62, 4, 5syl2anc 583 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
76ralbidva 3170 . . . . . 6 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥𝑦))
87rexbidva 3171 . . . . 5 (𝐴 ⊆ On → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦))
98notbid 318 . . . 4 (𝐴 ⊆ On → (¬ ∃𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦))
109bicomd 222 . . 3 (𝐴 ⊆ On → (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
11 dfrex2 3068 . . . . 5 (∃𝑦𝐴 𝑥𝑦 ↔ ¬ ∀𝑦𝐴 ¬ 𝑥𝑦)
1211ralbii 3088 . . . 4 (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥𝑦)
13 ralnex 3067 . . . 4 (∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
1412, 13bitri 275 . . 3 (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
15 unielid 42560 . . . 4 ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
1615notbii 320 . . 3 𝐴𝐴 ↔ ¬ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
1710, 14, 163bitr4g 314 . 2 (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ¬ 𝐴𝐴))
18 onsupnmax 42569 . . 3 (𝐴 ⊆ On → (¬ 𝐴𝐴 𝐴 = 𝐴))
1918pm4.71rd 562 . 2 (𝐴 ⊆ On → (¬ 𝐴𝐴 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴)))
2017, 19bitrd 279 1 (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  wrex 3065  wss 3944   cuni 4903  Oncon0 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-tr 5260  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-ord 6366  df-on 6367  df-suc 6369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator