Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupeqnmax Structured version   Visualization version   GIF version

Theorem onsupeqnmax 43243
Description: Condition when the supremum of a class of ordinals is not the maximum element of that class. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsupeqnmax (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem onsupeqnmax
StepHypRef Expression
1 simpl 482 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝐴 ⊆ On)
21sselda 3949 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ On)
3 ssel2 3944 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
43adantr 480 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ On)
5 ontri1 6369 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
62, 4, 5syl2anc 584 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
76ralbidva 3155 . . . . . 6 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥𝑦))
87rexbidva 3156 . . . . 5 (𝐴 ⊆ On → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦))
98notbid 318 . . . 4 (𝐴 ⊆ On → (¬ ∃𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦))
109bicomd 223 . . 3 (𝐴 ⊆ On → (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
11 dfrex2 3057 . . . . 5 (∃𝑦𝐴 𝑥𝑦 ↔ ¬ ∀𝑦𝐴 ¬ 𝑥𝑦)
1211ralbii 3076 . . . 4 (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥𝑦)
13 ralnex 3056 . . . 4 (∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
1412, 13bitri 275 . . 3 (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
15 unielid 43215 . . . 4 ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
1615notbii 320 . . 3 𝐴𝐴 ↔ ¬ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
1710, 14, 163bitr4g 314 . 2 (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ¬ 𝐴𝐴))
18 onsupnmax 43224 . . 3 (𝐴 ⊆ On → (¬ 𝐴𝐴 𝐴 = 𝐴))
1918pm4.71rd 562 . 2 (𝐴 ⊆ On → (¬ 𝐴𝐴 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴)))
2017, 19bitrd 279 1 (𝐴 ⊆ On → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ( 𝐴 = 𝐴 ∧ ¬ 𝐴𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   cuni 4874  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-suc 6341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator