![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupnub | Structured version Visualization version GIF version |
Description: An upper bound of a set of ordinals is not less than the supremum. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
onsupnub | ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ On ∧ ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵)) → ∪ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . 2 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ On ∧ ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵)) → ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵) | |
2 | unissb 4947 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ On ∧ ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵)) → ∪ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2099 ∀wral 3051 ⊆ wss 3947 ∪ cuni 4913 Oncon0 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-v 3464 df-ss 3964 df-uni 4914 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |