![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupnub | Structured version Visualization version GIF version |
Description: An upper bound of a set of ordinals is not less than the supremum. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
onsupnub | ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ On ∧ ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵)) → ∪ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . 2 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ On ∧ ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵)) → ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵) | |
2 | unissb 4943 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ On ∧ ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵)) → ∪ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3948 ∪ cuni 4908 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-v 3476 df-in 3955 df-ss 3965 df-uni 4909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |