| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version | ||
| Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1862 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 2 | eluni 4863 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 ∪ cuni 4860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-v 3439 df-uni 4861 |
| This theorem is referenced by: uni0b 4886 intssuni 4922 iuncom4 4952 inuni 5292 cnvuni 5832 chfnrn 6990 ssorduni 7720 unon 7769 limuni3 7790 frrlem9 8232 onfununi 8269 oarec 8485 uniinqs 8729 fissuni 9250 finsschain 9252 r1sdom 9676 rankuni2b 9755 cflm 10150 coflim 10161 axdc3lem2 10351 fpwwe2lem11 10541 uniwun 10640 tskr1om2 10668 tskuni 10683 axgroth3 10731 inaprc 10736 tskmval 10739 tskmcl 10741 suplem1pr 10952 lbsextlem2 21100 lbsextlem3 21101 isbasis3g 22867 eltg2b 22877 tgcl 22887 ppttop 22925 epttop 22927 neiptoptop 23049 tgcmp 23319 locfincmp 23444 dissnref 23446 comppfsc 23450 1stckgenlem 23471 txuni2 23483 txcmplem1 23559 tgqtop 23630 filuni 23803 alexsubALTlem4 23968 ptcmplem3 23972 ptcmplem4 23973 utoptop 24152 icccmplem1 24741 icccmplem3 24743 cnheibor 24884 bndth 24887 lebnumlem1 24890 bcthlem4 25257 ovolicc2lem5 25452 dyadmbllem 25530 itg2gt0 25691 rexunirn 32475 unipreima 32629 acunirnmpt2 32646 acunirnmpt2f 32647 elrspunidl 33402 ssdifidllem 33430 ssmxidllem 33447 reff 33875 locfinreflem 33876 cmpcref 33886 ddemeas 34272 dya2iocuni 34319 bnj1379 34865 cvmsss2 35341 cvmseu 35343 untuni 35776 dfon2lem3 35850 dfon2lem7 35854 dfon2lem8 35855 brbigcup 35963 neibastop1 36426 neibastop2lem 36427 fvineqsneq 37479 heicant 37718 mblfinlem1 37720 cover2 37778 heiborlem9 37882 unichnidl 38094 erimeq2 38799 prtlem16 38991 prter2 39003 prter3 39004 ssunib 43340 onsupuni 43349 onsuplub 43368 restuni3 45242 disjinfi 45316 cncfuni 46011 intsaluni 46454 salgencntex 46468 |
| Copyright terms: Public domain | W3C validator |