Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version |
Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1865 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
2 | eluni 4843 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
3 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2107 ∃wrex 3066 ∪ cuni 4840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rex 3071 df-v 3435 df-uni 4841 |
This theorem is referenced by: uni0b 4868 intssuni 4902 iuncom4 4933 inuni 5268 cnvuni 5798 chfnrn 6935 ssorduni 7638 unon 7687 limuni3 7708 frrlem9 8119 onfununi 8181 oarec 8402 uniinqs 8595 fissuni 9133 finsschain 9135 r1sdom 9541 rankuni2b 9620 cflm 10015 coflim 10026 axdc3lem2 10216 fpwwe2lem11 10406 uniwun 10505 tskr1om2 10533 tskuni 10548 axgroth3 10596 inaprc 10601 tskmval 10604 tskmcl 10606 suplem1pr 10817 lbsextlem2 20430 lbsextlem3 20431 isbasis3g 22108 eltg2b 22118 tgcl 22128 ppttop 22166 epttop 22168 neiptoptop 22291 tgcmp 22561 locfincmp 22686 dissnref 22688 comppfsc 22692 1stckgenlem 22713 txuni2 22725 txcmplem1 22801 tgqtop 22872 filuni 23045 alexsubALTlem4 23210 ptcmplem3 23214 ptcmplem4 23215 utoptop 23395 icccmplem1 23994 icccmplem3 23996 cnheibor 24127 bndth 24130 lebnumlem1 24133 bcthlem4 24500 ovolicc2lem5 24694 dyadmbllem 24772 itg2gt0 24934 rexunirn 30849 unipreima 30990 acunirnmpt2 31006 acunirnmpt2f 31007 elrspunidl 31615 ssmxidllem 31650 reff 31798 locfinreflem 31799 cmpcref 31809 ddemeas 32213 dya2iocuni 32259 bnj1379 32819 cvmsss2 33245 cvmseu 33247 untuni 33659 dfon2lem3 33770 dfon2lem7 33774 dfon2lem8 33775 brbigcup 34209 neibastop1 34557 neibastop2lem 34558 fvineqsneq 35592 heicant 35821 mblfinlem1 35823 cover2 35881 heiborlem9 35986 unichnidl 36198 erim2 36796 prtlem16 36890 prter2 36902 prter3 36903 restuni3 42674 disjinfi 42738 cncfuni 43434 intsaluni 43875 salgencntex 43889 |
Copyright terms: Public domain | W3C validator |