| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version | ||
| Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 2 | eluni 4877 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-uni 4875 |
| This theorem is referenced by: uni0b 4900 intssuni 4937 iuncom4 4967 inuni 5308 cnvuni 5853 chfnrn 7024 ssorduni 7758 unon 7809 limuni3 7831 frrlem9 8276 onfununi 8313 oarec 8529 uniinqs 8773 fissuni 9315 finsschain 9317 r1sdom 9734 rankuni2b 9813 cflm 10210 coflim 10221 axdc3lem2 10411 fpwwe2lem11 10601 uniwun 10700 tskr1om2 10728 tskuni 10743 axgroth3 10791 inaprc 10796 tskmval 10799 tskmcl 10801 suplem1pr 11012 lbsextlem2 21076 lbsextlem3 21077 isbasis3g 22843 eltg2b 22853 tgcl 22863 ppttop 22901 epttop 22903 neiptoptop 23025 tgcmp 23295 locfincmp 23420 dissnref 23422 comppfsc 23426 1stckgenlem 23447 txuni2 23459 txcmplem1 23535 tgqtop 23606 filuni 23779 alexsubALTlem4 23944 ptcmplem3 23948 ptcmplem4 23949 utoptop 24129 icccmplem1 24718 icccmplem3 24720 cnheibor 24861 bndth 24864 lebnumlem1 24867 bcthlem4 25234 ovolicc2lem5 25429 dyadmbllem 25507 itg2gt0 25668 rexunirn 32428 unipreima 32574 acunirnmpt2 32591 acunirnmpt2f 32592 elrspunidl 33406 ssdifidllem 33434 ssmxidllem 33451 reff 33836 locfinreflem 33837 cmpcref 33847 ddemeas 34233 dya2iocuni 34281 bnj1379 34827 cvmsss2 35268 cvmseu 35270 untuni 35703 dfon2lem3 35780 dfon2lem7 35784 dfon2lem8 35785 brbigcup 35893 neibastop1 36354 neibastop2lem 36355 fvineqsneq 37407 heicant 37656 mblfinlem1 37658 cover2 37716 heiborlem9 37820 unichnidl 38032 erimeq2 38677 prtlem16 38869 prter2 38881 prter3 38882 ssunib 43216 onsupuni 43225 onsuplub 43244 restuni3 45119 disjinfi 45193 cncfuni 45891 intsaluni 46334 salgencntex 46348 |
| Copyright terms: Public domain | W3C validator |