| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version | ||
| Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 2 | eluni 4886 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-v 3461 df-uni 4884 |
| This theorem is referenced by: uni0b 4909 intssuni 4946 iuncom4 4976 inuni 5320 cnvuni 5866 chfnrn 7039 ssorduni 7773 unon 7825 limuni3 7847 frrlem9 8293 onfununi 8355 oarec 8574 uniinqs 8811 fissuni 9369 finsschain 9371 r1sdom 9788 rankuni2b 9867 cflm 10264 coflim 10275 axdc3lem2 10465 fpwwe2lem11 10655 uniwun 10754 tskr1om2 10782 tskuni 10797 axgroth3 10845 inaprc 10850 tskmval 10853 tskmcl 10855 suplem1pr 11066 lbsextlem2 21120 lbsextlem3 21121 isbasis3g 22887 eltg2b 22897 tgcl 22907 ppttop 22945 epttop 22947 neiptoptop 23069 tgcmp 23339 locfincmp 23464 dissnref 23466 comppfsc 23470 1stckgenlem 23491 txuni2 23503 txcmplem1 23579 tgqtop 23650 filuni 23823 alexsubALTlem4 23988 ptcmplem3 23992 ptcmplem4 23993 utoptop 24173 icccmplem1 24762 icccmplem3 24764 cnheibor 24905 bndth 24908 lebnumlem1 24911 bcthlem4 25279 ovolicc2lem5 25474 dyadmbllem 25552 itg2gt0 25713 rexunirn 32473 unipreima 32621 acunirnmpt2 32638 acunirnmpt2f 32639 elrspunidl 33443 ssdifidllem 33471 ssmxidllem 33488 reff 33870 locfinreflem 33871 cmpcref 33881 ddemeas 34267 dya2iocuni 34315 bnj1379 34861 cvmsss2 35296 cvmseu 35298 untuni 35726 dfon2lem3 35803 dfon2lem7 35807 dfon2lem8 35808 brbigcup 35916 neibastop1 36377 neibastop2lem 36378 fvineqsneq 37430 heicant 37679 mblfinlem1 37681 cover2 37739 heiborlem9 37843 unichnidl 38055 erimeq2 38696 prtlem16 38887 prter2 38899 prter3 38900 ssunib 43244 onsupuni 43253 onsuplub 43272 restuni3 45142 disjinfi 45216 cncfuni 45915 intsaluni 46358 salgencntex 46372 |
| Copyright terms: Public domain | W3C validator |