| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version | ||
| Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1862 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 2 | eluni 4862 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-uni 4860 |
| This theorem is referenced by: uni0b 4885 intssuni 4920 iuncom4 4950 inuni 5288 cnvuni 5826 chfnrn 6982 ssorduni 7712 unon 7761 limuni3 7782 frrlem9 8224 onfununi 8261 oarec 8477 uniinqs 8721 fissuni 9241 finsschain 9243 r1sdom 9667 rankuni2b 9746 cflm 10141 coflim 10152 axdc3lem2 10342 fpwwe2lem11 10532 uniwun 10631 tskr1om2 10659 tskuni 10674 axgroth3 10722 inaprc 10727 tskmval 10730 tskmcl 10732 suplem1pr 10943 lbsextlem2 21097 lbsextlem3 21098 isbasis3g 22865 eltg2b 22875 tgcl 22885 ppttop 22923 epttop 22925 neiptoptop 23047 tgcmp 23317 locfincmp 23442 dissnref 23444 comppfsc 23448 1stckgenlem 23469 txuni2 23481 txcmplem1 23557 tgqtop 23628 filuni 23801 alexsubALTlem4 23966 ptcmplem3 23970 ptcmplem4 23971 utoptop 24150 icccmplem1 24739 icccmplem3 24741 cnheibor 24882 bndth 24885 lebnumlem1 24888 bcthlem4 25255 ovolicc2lem5 25450 dyadmbllem 25528 itg2gt0 25689 rexunirn 32469 unipreima 32623 acunirnmpt2 32640 acunirnmpt2f 32641 elrspunidl 33391 ssdifidllem 33419 ssmxidllem 33436 reff 33850 locfinreflem 33851 cmpcref 33861 ddemeas 34247 dya2iocuni 34294 bnj1379 34840 cvmsss2 35316 cvmseu 35318 untuni 35751 dfon2lem3 35825 dfon2lem7 35829 dfon2lem8 35830 brbigcup 35938 neibastop1 36399 neibastop2lem 36400 fvineqsneq 37452 heicant 37701 mblfinlem1 37703 cover2 37761 heiborlem9 37865 unichnidl 38077 erimeq2 38722 prtlem16 38914 prter2 38926 prter3 38927 ssunib 43259 onsupuni 43268 onsuplub 43287 restuni3 45161 disjinfi 45235 cncfuni 45930 intsaluni 46373 salgencntex 46387 |
| Copyright terms: Public domain | W3C validator |