![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version |
Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1858 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
2 | eluni 4914 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
3 | df-rex 3068 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1775 ∈ wcel 2105 ∃wrex 3067 ∪ cuni 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rex 3068 df-v 3479 df-uni 4912 |
This theorem is referenced by: uni0b 4937 intssuni 4974 iuncom4 5004 inuni 5355 cnvuni 5899 chfnrn 7068 ssorduni 7797 unon 7850 limuni3 7872 frrlem9 8317 onfununi 8379 oarec 8598 uniinqs 8835 fissuni 9394 finsschain 9396 r1sdom 9811 rankuni2b 9890 cflm 10287 coflim 10298 axdc3lem2 10488 fpwwe2lem11 10678 uniwun 10777 tskr1om2 10805 tskuni 10820 axgroth3 10868 inaprc 10873 tskmval 10876 tskmcl 10878 suplem1pr 11089 lbsextlem2 21178 lbsextlem3 21179 isbasis3g 22971 eltg2b 22981 tgcl 22991 ppttop 23029 epttop 23031 neiptoptop 23154 tgcmp 23424 locfincmp 23549 dissnref 23551 comppfsc 23555 1stckgenlem 23576 txuni2 23588 txcmplem1 23664 tgqtop 23735 filuni 23908 alexsubALTlem4 24073 ptcmplem3 24077 ptcmplem4 24078 utoptop 24258 icccmplem1 24857 icccmplem3 24859 cnheibor 25000 bndth 25003 lebnumlem1 25006 bcthlem4 25374 ovolicc2lem5 25569 dyadmbllem 25647 itg2gt0 25809 rexunirn 32519 unipreima 32659 acunirnmpt2 32676 acunirnmpt2f 32677 elrspunidl 33435 ssdifidllem 33463 ssmxidllem 33480 reff 33799 locfinreflem 33800 cmpcref 33810 ddemeas 34216 dya2iocuni 34264 bnj1379 34822 cvmsss2 35258 cvmseu 35260 untuni 35688 dfon2lem3 35766 dfon2lem7 35770 dfon2lem8 35771 brbigcup 35879 neibastop1 36341 neibastop2lem 36342 fvineqsneq 37394 heicant 37641 mblfinlem1 37643 cover2 37701 heiborlem9 37805 unichnidl 38017 erimeq2 38659 prtlem16 38850 prter2 38862 prter3 38863 ssunib 43208 onsupuni 43217 onsuplub 43236 restuni3 45057 disjinfi 45134 cncfuni 45841 intsaluni 46284 salgencntex 46298 |
Copyright terms: Public domain | W3C validator |