Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version |
Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1863 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
2 | eluni 4853 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
3 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
4 | 1, 2, 3 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1780 ∈ wcel 2105 ∃wrex 3071 ∪ cuni 4850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rex 3072 df-v 3443 df-uni 4851 |
This theorem is referenced by: uni0b 4879 intssuni 4914 iuncom4 4945 inuni 5282 cnvuni 5815 chfnrn 6965 ssorduni 7669 unon 7721 limuni3 7743 frrlem9 8157 onfununi 8219 oarec 8441 uniinqs 8634 fissuni 9194 finsschain 9196 r1sdom 9603 rankuni2b 9682 cflm 10079 coflim 10090 axdc3lem2 10280 fpwwe2lem11 10470 uniwun 10569 tskr1om2 10597 tskuni 10612 axgroth3 10660 inaprc 10665 tskmval 10668 tskmcl 10670 suplem1pr 10881 lbsextlem2 20493 lbsextlem3 20494 isbasis3g 22171 eltg2b 22181 tgcl 22191 ppttop 22229 epttop 22231 neiptoptop 22354 tgcmp 22624 locfincmp 22749 dissnref 22751 comppfsc 22755 1stckgenlem 22776 txuni2 22788 txcmplem1 22864 tgqtop 22935 filuni 23108 alexsubALTlem4 23273 ptcmplem3 23277 ptcmplem4 23278 utoptop 23458 icccmplem1 24057 icccmplem3 24059 cnheibor 24190 bndth 24193 lebnumlem1 24196 bcthlem4 24563 ovolicc2lem5 24757 dyadmbllem 24835 itg2gt0 24997 rexunirn 30949 unipreima 31089 acunirnmpt2 31105 acunirnmpt2f 31106 elrspunidl 31711 ssmxidllem 31746 reff 31895 locfinreflem 31896 cmpcref 31906 ddemeas 32310 dya2iocuni 32356 bnj1379 32915 cvmsss2 33341 cvmseu 33343 untuni 33755 dfon2lem3 33860 dfon2lem7 33864 dfon2lem8 33865 brbigcup 34258 neibastop1 34606 neibastop2lem 34607 fvineqsneq 35639 heicant 35868 mblfinlem1 35870 cover2 35928 heiborlem9 36033 unichnidl 36245 erimeq2 36896 prtlem16 37087 prter2 37099 prter3 37100 restuni3 42889 disjinfi 42959 cncfuni 43664 intsaluni 44105 salgencntex 44119 |
Copyright terms: Public domain | W3C validator |