| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version | ||
| Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 2 | eluni 4864 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3440 df-uni 4862 |
| This theorem is referenced by: uni0b 4887 intssuni 4923 iuncom4 4953 inuni 5292 cnvuni 5833 chfnrn 6987 ssorduni 7719 unon 7770 limuni3 7792 frrlem9 8234 onfununi 8271 oarec 8487 uniinqs 8731 fissuni 9266 finsschain 9268 r1sdom 9689 rankuni2b 9768 cflm 10163 coflim 10174 axdc3lem2 10364 fpwwe2lem11 10554 uniwun 10653 tskr1om2 10681 tskuni 10696 axgroth3 10744 inaprc 10749 tskmval 10752 tskmcl 10754 suplem1pr 10965 lbsextlem2 21084 lbsextlem3 21085 isbasis3g 22852 eltg2b 22862 tgcl 22872 ppttop 22910 epttop 22912 neiptoptop 23034 tgcmp 23304 locfincmp 23429 dissnref 23431 comppfsc 23435 1stckgenlem 23456 txuni2 23468 txcmplem1 23544 tgqtop 23615 filuni 23788 alexsubALTlem4 23953 ptcmplem3 23957 ptcmplem4 23958 utoptop 24138 icccmplem1 24727 icccmplem3 24729 cnheibor 24870 bndth 24873 lebnumlem1 24876 bcthlem4 25243 ovolicc2lem5 25438 dyadmbllem 25516 itg2gt0 25677 rexunirn 32454 unipreima 32600 acunirnmpt2 32617 acunirnmpt2f 32618 elrspunidl 33378 ssdifidllem 33406 ssmxidllem 33423 reff 33808 locfinreflem 33809 cmpcref 33819 ddemeas 34205 dya2iocuni 34253 bnj1379 34799 cvmsss2 35249 cvmseu 35251 untuni 35684 dfon2lem3 35761 dfon2lem7 35765 dfon2lem8 35766 brbigcup 35874 neibastop1 36335 neibastop2lem 36336 fvineqsneq 37388 heicant 37637 mblfinlem1 37639 cover2 37697 heiborlem9 37801 unichnidl 38013 erimeq2 38658 prtlem16 38850 prter2 38862 prter3 38863 ssunib 43196 onsupuni 43205 onsuplub 43224 restuni3 45099 disjinfi 45173 cncfuni 45871 intsaluni 46314 salgencntex 46328 |
| Copyright terms: Public domain | W3C validator |