| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version | ||
| Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 2 | eluni 4874 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3449 df-uni 4872 |
| This theorem is referenced by: uni0b 4897 intssuni 4934 iuncom4 4964 inuni 5305 cnvuni 5850 chfnrn 7021 ssorduni 7755 unon 7806 limuni3 7828 frrlem9 8273 onfununi 8310 oarec 8526 uniinqs 8770 fissuni 9308 finsschain 9310 r1sdom 9727 rankuni2b 9806 cflm 10203 coflim 10214 axdc3lem2 10404 fpwwe2lem11 10594 uniwun 10693 tskr1om2 10721 tskuni 10736 axgroth3 10784 inaprc 10789 tskmval 10792 tskmcl 10794 suplem1pr 11005 lbsextlem2 21069 lbsextlem3 21070 isbasis3g 22836 eltg2b 22846 tgcl 22856 ppttop 22894 epttop 22896 neiptoptop 23018 tgcmp 23288 locfincmp 23413 dissnref 23415 comppfsc 23419 1stckgenlem 23440 txuni2 23452 txcmplem1 23528 tgqtop 23599 filuni 23772 alexsubALTlem4 23937 ptcmplem3 23941 ptcmplem4 23942 utoptop 24122 icccmplem1 24711 icccmplem3 24713 cnheibor 24854 bndth 24857 lebnumlem1 24860 bcthlem4 25227 ovolicc2lem5 25422 dyadmbllem 25500 itg2gt0 25661 rexunirn 32421 unipreima 32567 acunirnmpt2 32584 acunirnmpt2f 32585 elrspunidl 33399 ssdifidllem 33427 ssmxidllem 33444 reff 33829 locfinreflem 33830 cmpcref 33840 ddemeas 34226 dya2iocuni 34274 bnj1379 34820 cvmsss2 35261 cvmseu 35263 untuni 35696 dfon2lem3 35773 dfon2lem7 35777 dfon2lem8 35778 brbigcup 35886 neibastop1 36347 neibastop2lem 36348 fvineqsneq 37400 heicant 37649 mblfinlem1 37651 cover2 37709 heiborlem9 37813 unichnidl 38025 erimeq2 38670 prtlem16 38862 prter2 38874 prter3 38875 ssunib 43209 onsupuni 43218 onsuplub 43237 restuni3 45112 disjinfi 45186 cncfuni 45884 intsaluni 46327 salgencntex 46341 |
| Copyright terms: Public domain | W3C validator |