Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version |
Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1865 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
2 | eluni 4839 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
3 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
4 | 1, 2, 3 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-v 3424 df-uni 4837 |
This theorem is referenced by: uni0b 4864 intssuni 4898 iuncom4 4929 inuni 5262 cnvuni 5784 chfnrn 6908 ssorduni 7606 unon 7653 limuni3 7674 frrlem9 8081 onfununi 8143 oarec 8355 uniinqs 8544 fissuni 9054 finsschain 9056 r1sdom 9463 rankuni2b 9542 cflm 9937 coflim 9948 axdc3lem2 10138 fpwwe2lem11 10328 uniwun 10427 tskr1om2 10455 tskuni 10470 axgroth3 10518 inaprc 10523 tskmval 10526 tskmcl 10528 suplem1pr 10739 lbsextlem2 20336 lbsextlem3 20337 isbasis3g 22007 eltg2b 22017 tgcl 22027 ppttop 22065 epttop 22067 neiptoptop 22190 tgcmp 22460 locfincmp 22585 dissnref 22587 comppfsc 22591 1stckgenlem 22612 txuni2 22624 txcmplem1 22700 tgqtop 22771 filuni 22944 alexsubALTlem4 23109 ptcmplem3 23113 ptcmplem4 23114 utoptop 23294 icccmplem1 23891 icccmplem3 23893 cnheibor 24024 bndth 24027 lebnumlem1 24030 bcthlem4 24396 ovolicc2lem5 24590 dyadmbllem 24668 itg2gt0 24830 rexunirn 30741 unipreima 30882 acunirnmpt2 30899 acunirnmpt2f 30900 elrspunidl 31508 ssmxidllem 31543 reff 31691 locfinreflem 31692 cmpcref 31702 ddemeas 32104 dya2iocuni 32150 bnj1379 32710 cvmsss2 33136 cvmseu 33138 untuni 33550 dfon2lem3 33667 dfon2lem7 33671 dfon2lem8 33672 brbigcup 34127 neibastop1 34475 neibastop2lem 34476 fvineqsneq 35510 heicant 35739 mblfinlem1 35741 cover2 35799 heiborlem9 35904 unichnidl 36116 erim2 36716 prtlem16 36810 prter2 36822 prter3 36823 restuni3 42556 disjinfi 42620 cncfuni 43317 intsaluni 43758 salgencntex 43772 |
Copyright terms: Public domain | W3C validator |