![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluni2 | Structured version Visualization version GIF version |
Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
eluni2 | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1860 | . 2 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
2 | eluni 4934 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | |
3 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-v 3490 df-uni 4932 |
This theorem is referenced by: uni0b 4957 intssuni 4994 iuncom4 5023 inuni 5368 cnvuni 5911 chfnrn 7082 ssorduni 7814 unon 7867 limuni3 7889 frrlem9 8335 onfununi 8397 oarec 8618 uniinqs 8855 fissuni 9427 finsschain 9429 r1sdom 9843 rankuni2b 9922 cflm 10319 coflim 10330 axdc3lem2 10520 fpwwe2lem11 10710 uniwun 10809 tskr1om2 10837 tskuni 10852 axgroth3 10900 inaprc 10905 tskmval 10908 tskmcl 10910 suplem1pr 11121 lbsextlem2 21184 lbsextlem3 21185 isbasis3g 22977 eltg2b 22987 tgcl 22997 ppttop 23035 epttop 23037 neiptoptop 23160 tgcmp 23430 locfincmp 23555 dissnref 23557 comppfsc 23561 1stckgenlem 23582 txuni2 23594 txcmplem1 23670 tgqtop 23741 filuni 23914 alexsubALTlem4 24079 ptcmplem3 24083 ptcmplem4 24084 utoptop 24264 icccmplem1 24863 icccmplem3 24865 cnheibor 25006 bndth 25009 lebnumlem1 25012 bcthlem4 25380 ovolicc2lem5 25575 dyadmbllem 25653 itg2gt0 25815 rexunirn 32520 unipreima 32662 acunirnmpt2 32678 acunirnmpt2f 32679 elrspunidl 33421 ssdifidllem 33449 ssmxidllem 33466 reff 33785 locfinreflem 33786 cmpcref 33796 ddemeas 34200 dya2iocuni 34248 bnj1379 34806 cvmsss2 35242 cvmseu 35244 untuni 35671 dfon2lem3 35749 dfon2lem7 35753 dfon2lem8 35754 brbigcup 35862 neibastop1 36325 neibastop2lem 36326 fvineqsneq 37378 heicant 37615 mblfinlem1 37617 cover2 37675 heiborlem9 37779 unichnidl 37991 erimeq2 38634 prtlem16 38825 prter2 38837 prter3 38838 ssunib 43181 onsupuni 43190 onsuplub 43209 restuni3 45020 disjinfi 45099 cncfuni 45807 intsaluni 46250 salgencntex 46264 |
Copyright terms: Public domain | W3C validator |