| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opabid2ss | Structured version Visualization version GIF version | ||
| Description: One direction of opabid2 5793 which holds without a Rel 𝐴 requirement. (Contributed by Thierry Arnoux, 18-Feb-2022.) |
| Ref | Expression |
|---|---|
| opabid2ss | ⊢ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 2 | 1 | opabssi 32547 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3916 〈cop 4597 {copab 5171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3933 df-opab 5172 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |