Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabid2ss Structured version   Visualization version   GIF version

Theorem opabid2ss 32597
Description: One direction of opabid2 5767 which holds without a Rel 𝐴 requirement. (Contributed by Thierry Arnoux, 18-Feb-2022.)
Assertion
Ref Expression
opabid2ss {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem opabid2ss
StepHypRef Expression
1 id 22 . 2 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
21opabssi 32596 1 {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wss 3897  cop 4579  {copab 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ss 3914  df-opab 5152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator