Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabid2ss Structured version   Visualization version   GIF version

Theorem opabid2ss 30855
Description: One direction of opabid2 5727 which holds without a Rel 𝐴 requirement. (Contributed by Thierry Arnoux, 18-Feb-2022.)
Assertion
Ref Expression
opabid2ss {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem opabid2ss
StepHypRef Expression
1 id 22 . 2 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
21opabssi 30854 1 {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wss 3883  cop 4564  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-opab 5133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator