Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabid2ss Structured version   Visualization version   GIF version

Theorem opabid2ss 32352
Description: One direction of opabid2 5821 which holds without a Rel 𝐴 requirement. (Contributed by Thierry Arnoux, 18-Feb-2022.)
Assertion
Ref Expression
opabid2ss {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem opabid2ss
StepHypRef Expression
1 id 22 . 2 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
21opabssi 32351 1 {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  wss 3943  cop 4629  {copab 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-in 3950  df-ss 3960  df-opab 5204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator