Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabssi Structured version   Visualization version   GIF version

Theorem opabssi 32541
Description: Sufficient condition for a collection of ordered pairs to be a subclass of a relation. (Contributed by Peter Mazsa, 21-Oct-2019.) (Revised by Thierry Arnoux, 18-Feb-2022.)
Hypothesis
Ref Expression
opabssi.1 (𝜑 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
Assertion
Ref Expression
opabssi {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabssi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 5170 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 eleq1 2816 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
32biimprd 248 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑧𝐴))
4 opabssi.1 . . . . 5 (𝜑 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)
53, 4impel 505 . . . 4 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧𝐴)
65exlimivv 1932 . . 3 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧𝐴)
76abssi 4033 . 2 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ 𝐴
81, 7eqsstri 3993 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wss 3914  cop 4595  {copab 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ss 3931  df-opab 5170
This theorem is referenced by:  opabid2ss  32542
  Copyright terms: Public domain W3C validator