| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opabssi | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for a collection of ordered pairs to be a subclass of a relation. (Contributed by Peter Mazsa, 21-Oct-2019.) (Revised by Thierry Arnoux, 18-Feb-2022.) |
| Ref | Expression |
|---|---|
| opabssi.1 | ⊢ (𝜑 → 〈𝑥, 𝑦〉 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| opabssi | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 5186 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | eleq1 2821 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 3 | 2 | biimprd 248 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑧 ∈ 𝐴)) |
| 4 | opabssi.1 | . . . . 5 ⊢ (𝜑 → 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 5 | 3, 4 | impel 505 | . . . 4 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ 𝐴) |
| 6 | 5 | exlimivv 1931 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝑧 ∈ 𝐴) |
| 7 | 6 | abssi 4050 | . 2 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ 𝐴 |
| 8 | 1, 7 | eqsstri 4010 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 ⊆ wss 3931 〈cop 4612 {copab 5185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ss 3948 df-opab 5186 |
| This theorem is referenced by: opabid2ss 32561 |
| Copyright terms: Public domain | W3C validator |