![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabssi | Structured version Visualization version GIF version |
Description: Sufficient condition for a collection of ordered pairs to be a subclass of a relation. (Contributed by Peter Mazsa, 21-Oct-2019.) (Revised by Thierry Arnoux, 18-Feb-2022.) |
Ref | Expression |
---|---|
opabssi.1 | ⊢ (𝜑 → ⟨𝑥, 𝑦⟩ ∈ 𝐴) |
Ref | Expression |
---|---|
opabssi | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5212 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
2 | eleq1 2822 | . . . . . 6 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)) | |
3 | 2 | biimprd 247 | . . . . 5 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑧 ∈ 𝐴)) |
4 | opabssi.1 | . . . . 5 ⊢ (𝜑 → ⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
5 | 3, 4 | impel 507 | . . . 4 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ 𝐴) |
6 | 5 | exlimivv 1936 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ 𝐴) |
7 | 6 | abssi 4068 | . 2 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ 𝐴 |
8 | 1, 7 | eqsstri 4017 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ⊆ wss 3949 ⟨cop 4635 {copab 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-opab 5212 |
This theorem is referenced by: opabid2ss 31874 |
Copyright terms: Public domain | W3C validator |