MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabid2 Structured version   Visualization version   GIF version

Theorem opabid2 5693
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
opabid2 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem opabid2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3495 . . . 4 𝑧 ∈ V
2 vex 3495 . . . 4 𝑤 ∈ V
3 opeq1 4795 . . . . 5 (𝑥 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
43eleq1d 2894 . . . 4 (𝑥 = 𝑧 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
5 opeq2 4796 . . . . 5 (𝑦 = 𝑤 → ⟨𝑧, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
65eleq1d 2894 . . . 4 (𝑦 = 𝑤 → (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴))
71, 2, 4, 6opelopab 5420 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)
87gen2 1788 . 2 𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)
9 relopab 5689 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴}
10 eqrel 5651 . . 3 ((Rel {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ∧ Rel 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴 ↔ ∀𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)))
119, 10mpan 686 . 2 (Rel 𝐴 → ({⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴 ↔ ∀𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)))
128, 11mpbiri 259 1 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wal 1526   = wceq 1528  wcel 2105  cop 4563  {copab 5119  Rel wrel 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-opab 5120  df-xp 5554  df-rel 5555
This theorem is referenced by:  opabbi2dv  5713
  Copyright terms: Public domain W3C validator