![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabid2 | Structured version Visualization version GIF version |
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.) |
Ref | Expression |
---|---|
opabid2 | ⊢ (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3452 | . . . 4 ⊢ 𝑧 ∈ V | |
2 | vex 3452 | . . . 4 ⊢ 𝑤 ∈ V | |
3 | opeq1 4835 | . . . . 5 ⊢ (𝑥 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑦⟩) | |
4 | 3 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝑧 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴)) |
5 | opeq2 4836 | . . . . 5 ⊢ (𝑦 = 𝑤 → ⟨𝑧, 𝑦⟩ = ⟨𝑧, 𝑤⟩) | |
6 | 5 | eleq1d 2823 | . . . 4 ⊢ (𝑦 = 𝑤 → (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)) |
7 | 1, 2, 4, 6 | opelopab 5504 | . . 3 ⊢ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴) |
8 | 7 | gen2 1799 | . 2 ⊢ ∀𝑧∀𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴) |
9 | relopabv 5782 | . . 3 ⊢ Rel {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} | |
10 | eqrel 5745 | . . 3 ⊢ ((Rel {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ∧ Rel 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴))) | |
11 | 9, 10 | mpan 689 | . 2 ⊢ (Rel 𝐴 → ({⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴))) |
12 | 8, 11 | mpbiri 258 | 1 ⊢ (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ⟨cop 4597 {copab 5172 Rel wrel 5643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5173 df-xp 5644 df-rel 5645 |
This theorem is referenced by: opabbi2dv 5810 |
Copyright terms: Public domain | W3C validator |