MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabid2 Structured version   Visualization version   GIF version

Theorem opabid2 5668
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
opabid2 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem opabid2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3447 . . . 4 𝑧 ∈ V
2 vex 3447 . . . 4 𝑤 ∈ V
3 opeq1 4766 . . . . 5 (𝑥 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
43eleq1d 2877 . . . 4 (𝑥 = 𝑧 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
5 opeq2 4768 . . . . 5 (𝑦 = 𝑤 → ⟨𝑧, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
65eleq1d 2877 . . . 4 (𝑦 = 𝑤 → (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴))
71, 2, 4, 6opelopab 5397 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)
87gen2 1798 . 2 𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)
9 relopab 5664 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴}
10 eqrel 5626 . . 3 ((Rel {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ∧ Rel 𝐴) → ({⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴 ↔ ∀𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)))
119, 10mpan 689 . 2 (Rel 𝐴 → ({⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴 ↔ ∀𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} ↔ ⟨𝑧, 𝑤⟩ ∈ 𝐴)))
128, 11mpbiri 261 1 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536   = wceq 1538  wcel 2112  cop 4534  {copab 5095  Rel wrel 5528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-opab 5096  df-xp 5529  df-rel 5530
This theorem is referenced by:  opabbi2dv  5688
  Copyright terms: Public domain W3C validator