![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabid2 | Structured version Visualization version GIF version |
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.) |
Ref | Expression |
---|---|
opabid2 | ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3482 | . . . 4 ⊢ 𝑧 ∈ V | |
2 | vex 3482 | . . . 4 ⊢ 𝑤 ∈ V | |
3 | opeq1 4878 | . . . . 5 ⊢ (𝑥 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑦〉) | |
4 | 3 | eleq1d 2824 | . . . 4 ⊢ (𝑥 = 𝑧 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
5 | opeq2 4879 | . . . . 5 ⊢ (𝑦 = 𝑤 → 〈𝑧, 𝑦〉 = 〈𝑧, 𝑤〉) | |
6 | 5 | eleq1d 2824 | . . . 4 ⊢ (𝑦 = 𝑤 → (〈𝑧, 𝑦〉 ∈ 𝐴 ↔ 〈𝑧, 𝑤〉 ∈ 𝐴)) |
7 | 1, 2, 4, 6 | opelopab 5552 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴) |
8 | 7 | gen2 1793 | . 2 ⊢ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴) |
9 | relopabv 5834 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} | |
10 | eqrel 5797 | . . 3 ⊢ ((Rel {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ∧ Rel 𝐴) → ({〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴))) | |
11 | 9, 10 | mpan 690 | . 2 ⊢ (Rel 𝐴 → ({〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴))) |
12 | 8, 11 | mpbiri 258 | 1 ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2106 〈cop 4637 {copab 5210 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-opab 5211 df-xp 5695 df-rel 5696 |
This theorem is referenced by: opabbi2dv 5863 tfsconcat0i 43335 |
Copyright terms: Public domain | W3C validator |