| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabid2 | Structured version Visualization version GIF version | ||
| Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.) |
| Ref | Expression |
|---|---|
| opabid2 | ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . 4 ⊢ 𝑧 ∈ V | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑤 ∈ V | |
| 3 | opeq1 4822 | . . . . 5 ⊢ (𝑥 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑦〉) | |
| 4 | 3 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝑧 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 5 | opeq2 4823 | . . . . 5 ⊢ (𝑦 = 𝑤 → 〈𝑧, 𝑦〉 = 〈𝑧, 𝑤〉) | |
| 6 | 5 | eleq1d 2816 | . . . 4 ⊢ (𝑦 = 𝑤 → (〈𝑧, 𝑦〉 ∈ 𝐴 ↔ 〈𝑧, 𝑤〉 ∈ 𝐴)) |
| 7 | 1, 2, 4, 6 | opelopab 5480 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴) |
| 8 | 7 | gen2 1797 | . 2 ⊢ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴) |
| 9 | relopabv 5760 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} | |
| 10 | eqrel 5723 | . . 3 ⊢ ((Rel {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ∧ Rel 𝐴) → ({〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴))) | |
| 11 | 9, 10 | mpan 690 | . 2 ⊢ (Rel 𝐴 → ({〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 ↔ ∀𝑧∀𝑤(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} ↔ 〈𝑧, 𝑤〉 ∈ 𝐴))) |
| 12 | 8, 11 | mpbiri 258 | 1 ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 〈cop 4579 {copab 5151 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: opabbi2dv 5788 tfsconcat0i 43437 |
| Copyright terms: Public domain | W3C validator |