Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oprabbid | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
oprabbid.1 | ⊢ Ⅎ𝑥𝜑 |
oprabbid.2 | ⊢ Ⅎ𝑦𝜑 |
oprabbid.3 | ⊢ Ⅎ𝑧𝜑 |
oprabbid.4 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
oprabbid | ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabbid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | oprabbid.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
3 | oprabbid.3 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
4 | oprabbid.4 | . . . . . . 7 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
5 | 4 | anbi2d 628 | . . . . . 6 ⊢ (𝜑 → ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜒))) |
6 | 3, 5 | exbid 2219 | . . . . 5 ⊢ (𝜑 → (∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜒))) |
7 | 2, 6 | exbid 2219 | . . . 4 ⊢ (𝜑 → (∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜒))) |
8 | 1, 7 | exbid 2219 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜒))) |
9 | 8 | abbidv 2808 | . 2 ⊢ (𝜑 → {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜒)}) |
10 | df-oprab 7259 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} | |
11 | df-oprab 7259 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜒} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜒)} | |
12 | 9, 10, 11 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 Ⅎwnf 1787 {cab 2715 〈cop 4564 {coprab 7256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-oprab 7259 |
This theorem is referenced by: mpoeq123 7325 |
Copyright terms: Public domain | W3C validator |