MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oprab Structured version   Visualization version   GIF version

Definition df-oprab 7357
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7356 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7513. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
df-oprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑤   𝑦,𝑤   𝑧,𝑤   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Detailed syntax breakdown of Definition df-oprab
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 vz . . 3 setvar 𝑧
51, 2, 3, 4coprab 7354 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
6 vw . . . . . . . . 9 setvar 𝑤
76cv 1539 . . . . . . . 8 class 𝑤
82cv 1539 . . . . . . . . . 10 class 𝑥
93cv 1539 . . . . . . . . . 10 class 𝑦
108, 9cop 4585 . . . . . . . . 9 class 𝑥, 𝑦
114cv 1539 . . . . . . . . 9 class 𝑧
1210, 11cop 4585 . . . . . . . 8 class ⟨⟨𝑥, 𝑦⟩, 𝑧
137, 12wceq 1540 . . . . . . 7 wff 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧
1413, 1wa 395 . . . . . 6 wff (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1514, 4wex 1779 . . . . 5 wff 𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1615, 3wex 1779 . . . 4 wff 𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1716, 2wex 1779 . . 3 wff 𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1817, 6cab 2707 . 2 class {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
195, 18wceq 1540 1 wff {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
Colors of variables: wff setvar class
This definition is referenced by:  oprabidw  7384  oprabid  7385  dfoprab2  7411  nfoprab1  7414  nfoprab2  7415  nfoprab3  7416  nfoprab  7417  oprabbid  7418  oprabbidv  7419  ssoprab2  7421  0mpo0  7436  mpo0  7438  cbvoprab2  7441  cbvoprab12v  7443  cbvoprab3v  7445  eloprabga  7462  oprabrexex2  7920  eloprabi  8005  dftpos3  8184  join0  18327  meet0  18328  mppspstlem  35546  mppsval  35547  colinearex  36036  cbvoprab1vw  36213  cbvoprab2vw  36214  cbvoprab123vw  36215  cbvoprab23vw  36216  cbvoprab13vw  36217  cbvoprab1davw  36247  cbvoprab2davw  36248  cbvoprab3davw  36249  cbvoprab123davw  36250  cbvoprab12davw  36251  cbvoprab23davw  36252  cbvoprab13davw  36253  csboprabg  37306  eloprab1st2nd  48856
  Copyright terms: Public domain W3C validator