MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oprab Structured version   Visualization version   GIF version

Definition df-oprab 7434
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7433 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7592. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
df-oprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑤   𝑦,𝑤   𝑧,𝑤   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Detailed syntax breakdown of Definition df-oprab
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 vz . . 3 setvar 𝑧
51, 2, 3, 4coprab 7431 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
6 vw . . . . . . . . 9 setvar 𝑤
76cv 1535 . . . . . . . 8 class 𝑤
82cv 1535 . . . . . . . . . 10 class 𝑥
93cv 1535 . . . . . . . . . 10 class 𝑦
108, 9cop 4636 . . . . . . . . 9 class 𝑥, 𝑦
114cv 1535 . . . . . . . . 9 class 𝑧
1210, 11cop 4636 . . . . . . . 8 class ⟨⟨𝑥, 𝑦⟩, 𝑧
137, 12wceq 1536 . . . . . . 7 wff 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧
1413, 1wa 395 . . . . . 6 wff (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1514, 4wex 1775 . . . . 5 wff 𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1615, 3wex 1775 . . . 4 wff 𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1716, 2wex 1775 . . 3 wff 𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1817, 6cab 2711 . 2 class {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
195, 18wceq 1536 1 wff {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
Colors of variables: wff setvar class
This definition is referenced by:  oprabidw  7461  oprabid  7462  dfoprab2  7490  nfoprab1  7493  nfoprab2  7494  nfoprab3  7495  nfoprab  7496  oprabbid  7497  oprabbidv  7498  ssoprab2  7500  0mpo0  7515  mpo0  7517  cbvoprab2  7520  cbvoprab12v  7522  cbvoprab3v  7524  eloprabga  7540  eloprabgaOLD  7541  oprabrexex2  8001  eloprabi  8086  dftpos3  8267  join0  18462  meet0  18463  cnvoprabOLD  32737  mppspstlem  35555  mppsval  35556  colinearex  36041  cbvoprab1vw  36219  cbvoprab2vw  36220  cbvoprab123vw  36221  cbvoprab23vw  36222  cbvoprab13vw  36223  cbvoprab1davw  36253  cbvoprab2davw  36254  cbvoprab3davw  36255  cbvoprab123davw  36256  cbvoprab12davw  36257  cbvoprab23davw  36258  cbvoprab13davw  36259  csboprabg  37312
  Copyright terms: Public domain W3C validator