| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-oprab | Structured version Visualization version GIF version | ||
| Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7390 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7549. (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| df-oprab | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | vz | . . 3 setvar 𝑧 | |
| 5 | 1, 2, 3, 4 | coprab 7388 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| 6 | vw | . . . . . . . . 9 setvar 𝑤 | |
| 7 | 6 | cv 1539 | . . . . . . . 8 class 𝑤 |
| 8 | 2 | cv 1539 | . . . . . . . . . 10 class 𝑥 |
| 9 | 3 | cv 1539 | . . . . . . . . . 10 class 𝑦 |
| 10 | 8, 9 | cop 4595 | . . . . . . . . 9 class 〈𝑥, 𝑦〉 |
| 11 | 4 | cv 1539 | . . . . . . . . 9 class 𝑧 |
| 12 | 10, 11 | cop 4595 | . . . . . . . 8 class 〈〈𝑥, 𝑦〉, 𝑧〉 |
| 13 | 7, 12 | wceq 1540 | . . . . . . 7 wff 𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 |
| 14 | 13, 1 | wa 395 | . . . . . 6 wff (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 15 | 14, 4 | wex 1779 | . . . . 5 wff ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 16 | 15, 3 | wex 1779 | . . . 4 wff ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 17 | 16, 2 | wex 1779 | . . 3 wff ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 18 | 17, 6 | cab 2707 | . 2 class {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| 19 | 5, 18 | wceq 1540 | 1 wff {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: oprabidw 7418 oprabid 7419 dfoprab2 7447 nfoprab1 7450 nfoprab2 7451 nfoprab3 7452 nfoprab 7453 oprabbid 7454 oprabbidv 7455 ssoprab2 7457 0mpo0 7472 mpo0 7474 cbvoprab2 7477 cbvoprab12v 7479 cbvoprab3v 7481 eloprabga 7498 oprabrexex2 7957 eloprabi 8042 dftpos3 8223 join0 18364 meet0 18365 mppspstlem 35558 mppsval 35559 colinearex 36048 cbvoprab1vw 36225 cbvoprab2vw 36226 cbvoprab123vw 36227 cbvoprab23vw 36228 cbvoprab13vw 36229 cbvoprab1davw 36259 cbvoprab2davw 36260 cbvoprab3davw 36261 cbvoprab123davw 36262 cbvoprab12davw 36263 cbvoprab23davw 36264 cbvoprab13davw 36265 csboprabg 37318 eloprab1st2nd 48853 |
| Copyright terms: Public domain | W3C validator |