| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-oprab | Structured version Visualization version GIF version | ||
| Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7406 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7565. (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| df-oprab | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | vz | . . 3 setvar 𝑧 | |
| 5 | 1, 2, 3, 4 | coprab 7404 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| 6 | vw | . . . . . . . . 9 setvar 𝑤 | |
| 7 | 6 | cv 1539 | . . . . . . . 8 class 𝑤 |
| 8 | 2 | cv 1539 | . . . . . . . . . 10 class 𝑥 |
| 9 | 3 | cv 1539 | . . . . . . . . . 10 class 𝑦 |
| 10 | 8, 9 | cop 4607 | . . . . . . . . 9 class 〈𝑥, 𝑦〉 |
| 11 | 4 | cv 1539 | . . . . . . . . 9 class 𝑧 |
| 12 | 10, 11 | cop 4607 | . . . . . . . 8 class 〈〈𝑥, 𝑦〉, 𝑧〉 |
| 13 | 7, 12 | wceq 1540 | . . . . . . 7 wff 𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 |
| 14 | 13, 1 | wa 395 | . . . . . 6 wff (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 15 | 14, 4 | wex 1779 | . . . . 5 wff ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 16 | 15, 3 | wex 1779 | . . . 4 wff ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 17 | 16, 2 | wex 1779 | . . 3 wff ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 18 | 17, 6 | cab 2713 | . 2 class {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| 19 | 5, 18 | wceq 1540 | 1 wff {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: oprabidw 7434 oprabid 7435 dfoprab2 7463 nfoprab1 7466 nfoprab2 7467 nfoprab3 7468 nfoprab 7469 oprabbid 7470 oprabbidv 7471 ssoprab2 7473 0mpo0 7488 mpo0 7490 cbvoprab2 7493 cbvoprab12v 7495 cbvoprab3v 7497 eloprabga 7514 oprabrexex2 7975 eloprabi 8060 dftpos3 8241 join0 18413 meet0 18414 mppspstlem 35539 mppsval 35540 colinearex 36024 cbvoprab1vw 36201 cbvoprab2vw 36202 cbvoprab123vw 36203 cbvoprab23vw 36204 cbvoprab13vw 36205 cbvoprab1davw 36235 cbvoprab2davw 36236 cbvoprab3davw 36237 cbvoprab123davw 36238 cbvoprab12davw 36239 cbvoprab23davw 36240 cbvoprab13davw 36241 csboprabg 37294 eloprab1st2nd 48791 |
| Copyright terms: Public domain | W3C validator |