Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-oprab | Structured version Visualization version GIF version |
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7258 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7411. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
df-oprab | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | vz | . . 3 setvar 𝑧 | |
5 | 1, 2, 3, 4 | coprab 7256 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
6 | vw | . . . . . . . . 9 setvar 𝑤 | |
7 | 6 | cv 1538 | . . . . . . . 8 class 𝑤 |
8 | 2 | cv 1538 | . . . . . . . . . 10 class 𝑥 |
9 | 3 | cv 1538 | . . . . . . . . . 10 class 𝑦 |
10 | 8, 9 | cop 4564 | . . . . . . . . 9 class 〈𝑥, 𝑦〉 |
11 | 4 | cv 1538 | . . . . . . . . 9 class 𝑧 |
12 | 10, 11 | cop 4564 | . . . . . . . 8 class 〈〈𝑥, 𝑦〉, 𝑧〉 |
13 | 7, 12 | wceq 1539 | . . . . . . 7 wff 𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 |
14 | 13, 1 | wa 395 | . . . . . 6 wff (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
15 | 14, 4 | wex 1783 | . . . . 5 wff ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
16 | 15, 3 | wex 1783 | . . . 4 wff ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
17 | 16, 2 | wex 1783 | . . 3 wff ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
18 | 17, 6 | cab 2715 | . 2 class {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
19 | 5, 18 | wceq 1539 | 1 wff {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
Colors of variables: wff setvar class |
This definition is referenced by: oprabidw 7286 oprabid 7287 dfoprab2 7311 nfoprab1 7314 nfoprab2 7315 nfoprab3 7316 nfoprab 7317 oprabbid 7318 oprabbidv 7319 ssoprab2 7321 0mpo0 7336 mpo0 7338 cbvoprab2 7341 eloprabga 7360 eloprabgaOLD 7361 oprabrexex2 7794 eloprabi 7876 dftpos3 8031 join0 18038 meet0 18039 cnvoprabOLD 30957 mppspstlem 33433 mppsval 33434 colinearex 34289 csboprabg 35428 |
Copyright terms: Public domain | W3C validator |