| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-oprab | Structured version Visualization version GIF version | ||
| Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7349 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7506. (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| df-oprab | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | vz | . . 3 setvar 𝑧 | |
| 5 | 1, 2, 3, 4 | coprab 7347 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| 6 | vw | . . . . . . . . 9 setvar 𝑤 | |
| 7 | 6 | cv 1540 | . . . . . . . 8 class 𝑤 |
| 8 | 2 | cv 1540 | . . . . . . . . . 10 class 𝑥 |
| 9 | 3 | cv 1540 | . . . . . . . . . 10 class 𝑦 |
| 10 | 8, 9 | cop 4579 | . . . . . . . . 9 class 〈𝑥, 𝑦〉 |
| 11 | 4 | cv 1540 | . . . . . . . . 9 class 𝑧 |
| 12 | 10, 11 | cop 4579 | . . . . . . . 8 class 〈〈𝑥, 𝑦〉, 𝑧〉 |
| 13 | 7, 12 | wceq 1541 | . . . . . . 7 wff 𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 |
| 14 | 13, 1 | wa 395 | . . . . . 6 wff (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 15 | 14, 4 | wex 1780 | . . . . 5 wff ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 16 | 15, 3 | wex 1780 | . . . 4 wff ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 17 | 16, 2 | wex 1780 | . . 3 wff ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 18 | 17, 6 | cab 2709 | . 2 class {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| 19 | 5, 18 | wceq 1541 | 1 wff {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: oprabidw 7377 oprabid 7378 dfoprab2 7404 nfoprab1 7407 nfoprab2 7408 nfoprab3 7409 nfoprab 7410 oprabbid 7411 oprabbidv 7412 ssoprab2 7414 0mpo0 7429 mpo0 7431 cbvoprab2 7434 cbvoprab12v 7436 cbvoprab3v 7438 eloprabga 7455 oprabrexex2 7910 eloprabi 7995 dftpos3 8174 join0 18309 meet0 18310 mppspstlem 35615 mppsval 35616 colinearex 36102 cbvoprab1vw 36279 cbvoprab2vw 36280 cbvoprab123vw 36281 cbvoprab23vw 36282 cbvoprab13vw 36283 cbvoprab1davw 36313 cbvoprab2davw 36314 cbvoprab3davw 36315 cbvoprab123davw 36316 cbvoprab12davw 36317 cbvoprab23davw 36318 cbvoprab13davw 36319 csboprabg 37372 eloprab1st2nd 48907 |
| Copyright terms: Public domain | W3C validator |