MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oprab Structured version   Visualization version   GIF version

Definition df-oprab 7391
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7390 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7549. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
df-oprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑤   𝑦,𝑤   𝑧,𝑤   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Detailed syntax breakdown of Definition df-oprab
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 vz . . 3 setvar 𝑧
51, 2, 3, 4coprab 7388 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
6 vw . . . . . . . . 9 setvar 𝑤
76cv 1539 . . . . . . . 8 class 𝑤
82cv 1539 . . . . . . . . . 10 class 𝑥
93cv 1539 . . . . . . . . . 10 class 𝑦
108, 9cop 4595 . . . . . . . . 9 class 𝑥, 𝑦
114cv 1539 . . . . . . . . 9 class 𝑧
1210, 11cop 4595 . . . . . . . 8 class ⟨⟨𝑥, 𝑦⟩, 𝑧
137, 12wceq 1540 . . . . . . 7 wff 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧
1413, 1wa 395 . . . . . 6 wff (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1514, 4wex 1779 . . . . 5 wff 𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1615, 3wex 1779 . . . 4 wff 𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1716, 2wex 1779 . . 3 wff 𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1817, 6cab 2707 . 2 class {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
195, 18wceq 1540 1 wff {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
Colors of variables: wff setvar class
This definition is referenced by:  oprabidw  7418  oprabid  7419  dfoprab2  7447  nfoprab1  7450  nfoprab2  7451  nfoprab3  7452  nfoprab  7453  oprabbid  7454  oprabbidv  7455  ssoprab2  7457  0mpo0  7472  mpo0  7474  cbvoprab2  7477  cbvoprab12v  7479  cbvoprab3v  7481  eloprabga  7498  oprabrexex2  7957  eloprabi  8042  dftpos3  8223  join0  18364  meet0  18365  mppspstlem  35558  mppsval  35559  colinearex  36048  cbvoprab1vw  36225  cbvoprab2vw  36226  cbvoprab123vw  36227  cbvoprab23vw  36228  cbvoprab13vw  36229  cbvoprab1davw  36259  cbvoprab2davw  36260  cbvoprab3davw  36261  cbvoprab123davw  36262  cbvoprab12davw  36263  cbvoprab23davw  36264  cbvoprab13davw  36265  csboprabg  37318  eloprab1st2nd  48853
  Copyright terms: Public domain W3C validator