![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-oprab | Structured version Visualization version GIF version |
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7414 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7570. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
df-oprab | ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | vz | . . 3 setvar 𝑧 | |
5 | 1, 2, 3, 4 | coprab 7412 | . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
6 | vw | . . . . . . . . 9 setvar 𝑤 | |
7 | 6 | cv 1540 | . . . . . . . 8 class 𝑤 |
8 | 2 | cv 1540 | . . . . . . . . . 10 class 𝑥 |
9 | 3 | cv 1540 | . . . . . . . . . 10 class 𝑦 |
10 | 8, 9 | cop 4634 | . . . . . . . . 9 class ⟨𝑥, 𝑦⟩ |
11 | 4 | cv 1540 | . . . . . . . . 9 class 𝑧 |
12 | 10, 11 | cop 4634 | . . . . . . . 8 class ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ |
13 | 7, 12 | wceq 1541 | . . . . . . 7 wff 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ |
14 | 13, 1 | wa 396 | . . . . . 6 wff (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
15 | 14, 4 | wex 1781 | . . . . 5 wff ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
16 | 15, 3 | wex 1781 | . . . 4 wff ∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
17 | 16, 2 | wex 1781 | . . 3 wff ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
18 | 17, 6 | cab 2709 | . 2 class {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} |
19 | 5, 18 | wceq 1541 | 1 wff {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} |
Colors of variables: wff setvar class |
This definition is referenced by: oprabidw 7442 oprabid 7443 dfoprab2 7469 nfoprab1 7472 nfoprab2 7473 nfoprab3 7474 nfoprab 7475 oprabbid 7476 oprabbidv 7477 ssoprab2 7479 0mpo0 7494 mpo0 7496 cbvoprab2 7499 eloprabga 7518 eloprabgaOLD 7519 oprabrexex2 7967 eloprabi 8051 dftpos3 8231 join0 18360 meet0 18361 cnvoprabOLD 31983 mppspstlem 34631 mppsval 34632 colinearex 35101 csboprabg 36297 |
Copyright terms: Public domain | W3C validator |