![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-oprab | Structured version Visualization version GIF version |
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7451 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7610. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
df-oprab | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | vz | . . 3 setvar 𝑧 | |
5 | 1, 2, 3, 4 | coprab 7449 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
6 | vw | . . . . . . . . 9 setvar 𝑤 | |
7 | 6 | cv 1536 | . . . . . . . 8 class 𝑤 |
8 | 2 | cv 1536 | . . . . . . . . . 10 class 𝑥 |
9 | 3 | cv 1536 | . . . . . . . . . 10 class 𝑦 |
10 | 8, 9 | cop 4654 | . . . . . . . . 9 class 〈𝑥, 𝑦〉 |
11 | 4 | cv 1536 | . . . . . . . . 9 class 𝑧 |
12 | 10, 11 | cop 4654 | . . . . . . . 8 class 〈〈𝑥, 𝑦〉, 𝑧〉 |
13 | 7, 12 | wceq 1537 | . . . . . . 7 wff 𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 |
14 | 13, 1 | wa 395 | . . . . . 6 wff (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
15 | 14, 4 | wex 1777 | . . . . 5 wff ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
16 | 15, 3 | wex 1777 | . . . 4 wff ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
17 | 16, 2 | wex 1777 | . . 3 wff ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
18 | 17, 6 | cab 2717 | . 2 class {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
19 | 5, 18 | wceq 1537 | 1 wff {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
Colors of variables: wff setvar class |
This definition is referenced by: oprabidw 7479 oprabid 7480 dfoprab2 7508 nfoprab1 7511 nfoprab2 7512 nfoprab3 7513 nfoprab 7514 oprabbid 7515 oprabbidv 7516 ssoprab2 7518 0mpo0 7533 mpo0 7535 cbvoprab2 7538 cbvoprab12v 7540 cbvoprab3v 7542 eloprabga 7558 eloprabgaOLD 7559 oprabrexex2 8019 eloprabi 8104 dftpos3 8285 join0 18475 meet0 18476 cnvoprabOLD 32734 mppspstlem 35539 mppsval 35540 colinearex 36024 cbvoprab1vw 36203 cbvoprab2vw 36204 cbvoprab123vw 36205 cbvoprab23vw 36206 cbvoprab13vw 36207 cbvoprab1davw 36237 cbvoprab2davw 36238 cbvoprab3davw 36239 cbvoprab123davw 36240 cbvoprab12davw 36241 cbvoprab23davw 36242 cbvoprab13davw 36243 csboprabg 37296 |
Copyright terms: Public domain | W3C validator |