MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oprab Structured version   Visualization version   GIF version

Definition df-oprab 7350
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7349 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7506. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
df-oprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑤   𝑦,𝑤   𝑧,𝑤   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Detailed syntax breakdown of Definition df-oprab
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 vz . . 3 setvar 𝑧
51, 2, 3, 4coprab 7347 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
6 vw . . . . . . . . 9 setvar 𝑤
76cv 1540 . . . . . . . 8 class 𝑤
82cv 1540 . . . . . . . . . 10 class 𝑥
93cv 1540 . . . . . . . . . 10 class 𝑦
108, 9cop 4579 . . . . . . . . 9 class 𝑥, 𝑦
114cv 1540 . . . . . . . . 9 class 𝑧
1210, 11cop 4579 . . . . . . . 8 class ⟨⟨𝑥, 𝑦⟩, 𝑧
137, 12wceq 1541 . . . . . . 7 wff 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧
1413, 1wa 395 . . . . . 6 wff (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1514, 4wex 1780 . . . . 5 wff 𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1615, 3wex 1780 . . . 4 wff 𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1716, 2wex 1780 . . 3 wff 𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1817, 6cab 2709 . 2 class {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
195, 18wceq 1541 1 wff {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
Colors of variables: wff setvar class
This definition is referenced by:  oprabidw  7377  oprabid  7378  dfoprab2  7404  nfoprab1  7407  nfoprab2  7408  nfoprab3  7409  nfoprab  7410  oprabbid  7411  oprabbidv  7412  ssoprab2  7414  0mpo0  7429  mpo0  7431  cbvoprab2  7434  cbvoprab12v  7436  cbvoprab3v  7438  eloprabga  7455  oprabrexex2  7910  eloprabi  7995  dftpos3  8174  join0  18309  meet0  18310  mppspstlem  35615  mppsval  35616  colinearex  36102  cbvoprab1vw  36279  cbvoprab2vw  36280  cbvoprab123vw  36281  cbvoprab23vw  36282  cbvoprab13vw  36283  cbvoprab1davw  36313  cbvoprab2davw  36314  cbvoprab3davw  36315  cbvoprab123davw  36316  cbvoprab12davw  36317  cbvoprab23davw  36318  cbvoprab13davw  36319  csboprabg  37372  eloprab1st2nd  48907
  Copyright terms: Public domain W3C validator