| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-oprab | Structured version Visualization version GIF version | ||
| Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7356 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7513. (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| df-oprab | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | vz | . . 3 setvar 𝑧 | |
| 5 | 1, 2, 3, 4 | coprab 7354 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| 6 | vw | . . . . . . . . 9 setvar 𝑤 | |
| 7 | 6 | cv 1539 | . . . . . . . 8 class 𝑤 |
| 8 | 2 | cv 1539 | . . . . . . . . . 10 class 𝑥 |
| 9 | 3 | cv 1539 | . . . . . . . . . 10 class 𝑦 |
| 10 | 8, 9 | cop 4585 | . . . . . . . . 9 class 〈𝑥, 𝑦〉 |
| 11 | 4 | cv 1539 | . . . . . . . . 9 class 𝑧 |
| 12 | 10, 11 | cop 4585 | . . . . . . . 8 class 〈〈𝑥, 𝑦〉, 𝑧〉 |
| 13 | 7, 12 | wceq 1540 | . . . . . . 7 wff 𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 |
| 14 | 13, 1 | wa 395 | . . . . . 6 wff (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 15 | 14, 4 | wex 1779 | . . . . 5 wff ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 16 | 15, 3 | wex 1779 | . . . 4 wff ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 17 | 16, 2 | wex 1779 | . . 3 wff ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 18 | 17, 6 | cab 2707 | . 2 class {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| 19 | 5, 18 | wceq 1540 | 1 wff {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: oprabidw 7384 oprabid 7385 dfoprab2 7411 nfoprab1 7414 nfoprab2 7415 nfoprab3 7416 nfoprab 7417 oprabbid 7418 oprabbidv 7419 ssoprab2 7421 0mpo0 7436 mpo0 7438 cbvoprab2 7441 cbvoprab12v 7443 cbvoprab3v 7445 eloprabga 7462 oprabrexex2 7920 eloprabi 8005 dftpos3 8184 join0 18327 meet0 18328 mppspstlem 35546 mppsval 35547 colinearex 36036 cbvoprab1vw 36213 cbvoprab2vw 36214 cbvoprab123vw 36215 cbvoprab23vw 36216 cbvoprab13vw 36217 cbvoprab1davw 36247 cbvoprab2davw 36248 cbvoprab3davw 36249 cbvoprab123davw 36250 cbvoprab12davw 36251 cbvoprab23davw 36252 cbvoprab13davw 36253 csboprabg 37306 eloprab1st2nd 48856 |
| Copyright terms: Public domain | W3C validator |