MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoprab Structured version   Visualization version   GIF version

Theorem nfoprab 6933
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
Hypothesis
Ref Expression
nfoprab.1 𝑤𝜑
Assertion
Ref Expression
nfoprab 𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Distinct variable groups:   𝑥,𝑤   𝑦,𝑤   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem nfoprab
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 6874 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2 nfv 2005 . . . . . . 7 𝑤 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧
3 nfoprab.1 . . . . . . 7 𝑤𝜑
42, 3nfan 1990 . . . . . 6 𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
54nfex 2330 . . . . 5 𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
65nfex 2330 . . . 4 𝑤𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
76nfex 2330 . . 3 𝑤𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
87nfab 2953 . 2 𝑤{𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
91, 8nfcxfr 2946 1 𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1637  wex 1859  wnf 1863  {cab 2792  wnfc 2935  cop 4376  {coprab 6871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-oprab 6874
This theorem is referenced by:  nfmpt2  6950
  Copyright terms: Public domain W3C validator