Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfoprab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
nfoprab.1 | ⊢ Ⅎ𝑤𝜑 |
Ref | Expression |
---|---|
nfoprab | ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 7272 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
2 | nfv 1920 | . . . . . . 7 ⊢ Ⅎ𝑤 𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 | |
3 | nfoprab.1 | . . . . . . 7 ⊢ Ⅎ𝑤𝜑 | |
4 | 2, 3 | nfan 1905 | . . . . . 6 ⊢ Ⅎ𝑤(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
5 | 4 | nfex 2321 | . . . . 5 ⊢ Ⅎ𝑤∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
6 | 5 | nfex 2321 | . . . 4 ⊢ Ⅎ𝑤∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
7 | 6 | nfex 2321 | . . 3 ⊢ Ⅎ𝑤∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
8 | 7 | nfab 2914 | . 2 ⊢ Ⅎ𝑤{𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
9 | 1, 8 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1785 Ⅎwnf 1789 {cab 2716 Ⅎwnfc 2888 〈cop 4572 {coprab 7269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-oprab 7272 |
This theorem is referenced by: nfmpo 7348 |
Copyright terms: Public domain | W3C validator |