![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfoprab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
nfoprab.1 | ⊢ Ⅎ𝑤𝜑 |
Ref | Expression |
---|---|
nfoprab | ⊢ Ⅎ𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 7416 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} | |
2 | nfv 1916 | . . . . . . 7 ⊢ Ⅎ𝑤 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ | |
3 | nfoprab.1 | . . . . . . 7 ⊢ Ⅎ𝑤𝜑 | |
4 | 2, 3 | nfan 1901 | . . . . . 6 ⊢ Ⅎ𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
5 | 4 | nfex 2316 | . . . . 5 ⊢ Ⅎ𝑤∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
6 | 5 | nfex 2316 | . . . 4 ⊢ Ⅎ𝑤∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
7 | 6 | nfex 2316 | . . 3 ⊢ Ⅎ𝑤∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
8 | 7 | nfab 2908 | . 2 ⊢ Ⅎ𝑤{𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} |
9 | 1, 8 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1780 Ⅎwnf 1784 {cab 2708 Ⅎwnfc 2882 ⟨cop 4634 {coprab 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-oprab 7416 |
This theorem is referenced by: nfmpo 7494 |
Copyright terms: Public domain | W3C validator |