![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfoprab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
nfoprab.1 | ⊢ Ⅎ𝑤𝜑 |
Ref | Expression |
---|---|
nfoprab | ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 7397 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
2 | nfv 1917 | . . . . . . 7 ⊢ Ⅎ𝑤 𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 | |
3 | nfoprab.1 | . . . . . . 7 ⊢ Ⅎ𝑤𝜑 | |
4 | 2, 3 | nfan 1902 | . . . . . 6 ⊢ Ⅎ𝑤(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
5 | 4 | nfex 2317 | . . . . 5 ⊢ Ⅎ𝑤∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
6 | 5 | nfex 2317 | . . . 4 ⊢ Ⅎ𝑤∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
7 | 6 | nfex 2317 | . . 3 ⊢ Ⅎ𝑤∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
8 | 7 | nfab 2908 | . 2 ⊢ Ⅎ𝑤{𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
9 | 1, 8 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 Ⅎwnf 1785 {cab 2708 Ⅎwnfc 2882 〈cop 4628 {coprab 7394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-oprab 7397 |
This theorem is referenced by: nfmpo 7475 |
Copyright terms: Public domain | W3C validator |