![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprabbidv | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) |
Ref | Expression |
---|---|
oprabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
oprabbidv | ⊢ (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabbidv.1 | . . . . . . 7 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 630 | . . . . . 6 ⊢ (𝜑 → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒))) |
3 | 2 | exbidv 1925 | . . . . 5 ⊢ (𝜑 → (∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒))) |
4 | 3 | exbidv 1925 | . . . 4 ⊢ (𝜑 → (∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒))) |
5 | 4 | exbidv 1925 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒))) |
6 | 5 | abbidv 2802 | . 2 ⊢ (𝜑 → {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒)}) |
7 | df-oprab 7413 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)} | |
8 | df-oprab 7413 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒)} | |
9 | 6, 7, 8 | 3eqtr4g 2798 | 1 ⊢ (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 {cab 2710 ⟨cop 4635 {coprab 7410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-oprab 7413 |
This theorem is referenced by: oprabbii 7476 mpoeq123dva 7483 mpoeq3dva 7486 resoprab2 7527 erovlem 8807 joinfval 18326 meetfval 18340 odujoin 18361 odumeet 18363 mppsval 34563 csbmpo123 36212 unceq 36465 uncf 36467 unccur 36471 |
Copyright terms: Public domain | W3C validator |