Home | Metamath
Proof Explorer Theorem List (p. 75 of 457) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28790) |
Hilbert Space Explorer
(28791-30313) |
Users' Mathboxes
(30314-45688) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cof 7401 | Extend class notation to include mapping of an operation to a function operation. |
class ∘f 𝑅 | ||
Syntax | cofr 7402 | Extend class notation to include mapping of a binary relation to a function relation. |
class ∘r 𝑅 | ||
Definition | df-of 7403* | Define the function operation map. The definition is designed so that if 𝑅 is a binary operation, then ∘f 𝑅 is the analogous operation on functions which corresponds to applying 𝑅 pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.) |
⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | ||
Definition | df-ofr 7404* | Define the function relation map. The definition is designed so that if 𝑅 is a binary relation, then ∘r 𝑅 is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ ∘r 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} | ||
Theorem | ofeq 7405 | Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) | ||
Theorem | ofreq 7406 | Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆) | ||
Theorem | ofexg 7407 | A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.) |
⊢ (𝐴 ∈ 𝑉 → ( ∘f 𝑅 ↾ 𝐴) ∈ V) | ||
Theorem | nfof 7408 | Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥 ∘f 𝑅 | ||
Theorem | nfofr 7409 | Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥 ∘r 𝑅 | ||
Theorem | ofrfvalg 7410* | Value of a relation applied to two functions. Originally part of ofrfval 7412, this version assumes the functions are sets rather than their domains, avoiding ax-rep 5154. (Contributed by SN, 5-Aug-2024.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝐴 ∩ 𝐵) = 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) | ||
Theorem | offval 7411* | Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝐴 ∩ 𝐵) = 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) | ||
Theorem | ofrfval 7412* | Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝐴 ∩ 𝐵) = 𝑆 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) | ||
Theorem | ofval 7413 | Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝐴 ∩ 𝐵) = 𝑆 & ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) & ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) | ||
Theorem | ofrval 7414 | Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝐴 ∩ 𝐵) = 𝑆 & ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) & ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∘r 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) | ||
Theorem | offn 7415 | The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝐴 ∩ 𝐵) = 𝑆 ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) | ||
Theorem | offun 7416 | The function operation produces a function. (Contributed by SN, 23-Jul-2024.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → Fun (𝐹 ∘f 𝑅𝐺)) | ||
Theorem | offval2f 7417* | The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 23-Jun-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) | ||
Theorem | ofmresval 7418 | Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘f 𝑅𝐺)) | ||
Theorem | fnfvof 7419 | Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.) |
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) | ||
Theorem | off 7420* | The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) | ||
Theorem | ofres 7421 | Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘f 𝑅(𝐺 ↾ 𝐶))) | ||
Theorem | offval2 7422* | The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) | ||
Theorem | ofrfval2 7423* | The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝐴 𝐵𝑅𝐶)) | ||
Theorem | ofmpteq 7424* | Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f 𝑅(𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) | ||
Theorem | ofco 7425 | The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐻:𝐷⟶𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻))) | ||
Theorem | offveq 7426* | Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐴) & ⊢ (𝜑 → 𝐻 Fn 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) | ||
Theorem | offveqb 7427* | Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐴) & ⊢ (𝜑 → 𝐻 Fn 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) ⇒ ⊢ (𝜑 → (𝐻 = (𝐹 ∘f 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) | ||
Theorem | ofc1 7428 | Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) | ||
Theorem | ofc2 7429 | Right operation by a constant. (Contributed by NM, 7-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) | ||
Theorem | ofc12 7430 | Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) | ||
Theorem | caofref 7431* | Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∘r 𝑅𝐹) | ||
Theorem | caofinvl 7432* | Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑁:𝑆⟶𝑆) & ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑁‘𝑥)𝑅𝑥) = 𝐵) ⇒ ⊢ (𝜑 → (𝐺 ∘f 𝑅𝐹) = (𝐴 × {𝐵})) | ||
Theorem | caofid0l 7433* | Transfer a left identity law to the function operation. (Contributed by NM, 21-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝑥) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = 𝐹) | ||
Theorem | caofid0r 7434* | Transfer a right identity law to the function operation. (Contributed by NM, 21-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝑥) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐵})) = 𝐹) | ||
Theorem | caofid1 7435* | Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐵})) = (𝐴 × {𝐶})) | ||
Theorem | caofid2 7436* | Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = (𝐴 × {𝐶})) | ||
Theorem | caofcom 7437* | Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝐺 ∘f 𝑅𝐹)) | ||
Theorem | caofrss 7438* | Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) ⇒ ⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 → 𝐹 ∘r 𝑇𝐺)) | ||
Theorem | caofass 7439* | Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦)𝑇𝑧) = (𝑥𝑂(𝑦𝑃𝑧))) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) ∘f 𝑇𝐻) = (𝐹 ∘f 𝑂(𝐺 ∘f 𝑃𝐻))) | ||
Theorem | caoftrn 7440* | Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) ⇒ ⊢ (𝜑 → ((𝐹 ∘r 𝑅𝐺 ∧ 𝐺 ∘r 𝑇𝐻) → 𝐹 ∘r 𝑈𝐻)) | ||
Theorem | caofdi 7441* | Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑇(𝐺 ∘f 𝑅𝐻)) = ((𝐹 ∘f 𝑇𝐺) ∘f 𝑂(𝐹 ∘f 𝑇𝐻))) | ||
Theorem | caofdir 7442* | Transfer a reverse distributive law to the function operation. (Contributed by NM, 19-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧))) ⇒ ⊢ (𝜑 → ((𝐺 ∘f 𝑅𝐻) ∘f 𝑇𝐹) = ((𝐺 ∘f 𝑇𝐹) ∘f 𝑂(𝐻 ∘f 𝑇𝐹))) | ||
Theorem | caonncan 7443* | Transfer nncan 10943-shaped laws to vectors of numbers. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴:𝐼⟶𝑆) & ⊢ (𝜑 → 𝐵:𝐼⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑀(𝑥𝑀𝑦)) = 𝑦) ⇒ ⊢ (𝜑 → (𝐴 ∘f 𝑀(𝐴 ∘f 𝑀𝐵)) = 𝐵) | ||
Syntax | crpss 7444 | Extend class notation to include the reified proper subset relation. |
class [⊊] | ||
Definition | df-rpss 7445* | Define a relation which corresponds to proper subsethood df-pss 3878 on sets. This allows us to use proper subsethood with general concepts that require relations, such as strict ordering, see sorpss 7450. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} | ||
Theorem | relrpss 7446 | The proper subset relation is a relation. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ Rel [⊊] | ||
Theorem | brrpssg 7447 | The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵)) | ||
Theorem | brrpss 7448 | The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵) | ||
Theorem | porpss 7449 | Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ [⊊] Po 𝐴 | ||
Theorem | sorpss 7450* | Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ ( [⊊] Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
Theorem | sorpssi 7451 | Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | ||
Theorem | sorpssun 7452 | A chain of sets is closed under binary union. (Contributed by Mario Carneiro, 16-May-2015.) |
⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∪ 𝐶) ∈ 𝐴) | ||
Theorem | sorpssin 7453 | A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015.) |
⊢ (( [⊊] Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∩ 𝐶) ∈ 𝐴) | ||
Theorem | sorpssuni 7454* | In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ ( [⊊] Or 𝑌 → (∃𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ↔ ∪ 𝑌 ∈ 𝑌)) | ||
Theorem | sorpssint 7455* | In a chain of sets, a minimal element is the intersection of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ ( [⊊] Or 𝑌 → (∃𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ↔ ∩ 𝑌 ∈ 𝑌)) | ||
Theorem | sorpsscmpl 7456* | The componentwise complement of a chain of sets is also a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
⊢ ( [⊊] Or 𝑌 → [⊊] Or {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌}) | ||
Axiom | ax-un 7457* |
Axiom of Union. An axiom of Zermelo-Fraenkel set theory. It states
that a set 𝑦 exists that includes the union of a
given set 𝑥
i.e. the collection of all members of the members of 𝑥. The
variant axun2 7459 states that the union itself exists. A
version with the
standard abbreviation for union is uniex2 7460. A version using class
notation is uniex 7463.
The union of a class df-uni 4797 should not be confused with the union of two classes df-un 3864. Their relationship is shown in unipr 4814. (Contributed by NM, 23-Dec-1993.) |
⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
Theorem | zfun 7458* | Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) Use ax-un 7457 instead. (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axun2 7459* | A variant of the Axiom of Union ax-un 7457. For any set 𝑥, there exists a set 𝑦 whose members are exactly the members of the members of 𝑥 i.e. the union of 𝑥. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | ||
Theorem | uniex2 7460* | The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.) |
⊢ ∃𝑦 𝑦 = ∪ 𝑥 | ||
Theorem | vuniex 7461 | The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
⊢ ∪ 𝑥 ∈ V | ||
Theorem | uniexg 7462 | The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | ||
Theorem | uniex 7463 | The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3423), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∪ 𝐴 ∈ V | ||
Theorem | uniexd 7464 | Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ V) | ||
Theorem | unex 7465 | The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ V | ||
Theorem | tpex 7466 | An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
⊢ {𝐴, 𝐵, 𝐶} ∈ V | ||
Theorem | unexb 7467 | Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.) |
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | unexg 7468 | A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | xpexg 7469 | The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7684. (Contributed by NM, 14-Aug-1994.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | ||
Theorem | xpexd 7470 | The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) | ||
Theorem | 3xpexg 7471 | The Cartesian product of three sets is a set. (Contributed by Alexander van der Vekens, 21-Feb-2018.) |
⊢ (𝑉 ∈ 𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V) | ||
Theorem | xpex 7472 | The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 × 𝐵) ∈ V | ||
Theorem | unexd 7473 | The union of two sets is a set. (Contributed by SN, 16-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | sqxpexg 7474 | The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | ||
Theorem | abnexg 7475* | Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 7664. Note that the second antecedent ∀𝑥 ∈ 𝐴𝑥 ∈ 𝐹 cannot be translated to 𝐴 ⊆ 𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 7477 and pwnex 7478 respectively, proved from abnex 7476, which is a consequence of abnexg 7475 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.) |
⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) | ||
Theorem | abnex 7476* | Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 7477 and pwnex 7478. See the comment of abnexg 7475. (Contributed by BJ, 2-May-2021.) |
⊢ (∀𝑥(𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝐹} ∈ V) | ||
Theorem | snnex 7477* | The class of all singletons is a proper class. See also pwnex 7478. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof shortened by BJ, 5-Dec-2021.) |
⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | ||
Theorem | pwnex 7478* | The class of all power sets is a proper class. See also snnex 7477. (Contributed by BJ, 2-May-2021.) |
⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V | ||
Theorem | difex2 7479 | If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐵) ∈ V)) | ||
Theorem | difsnexi 7480 | If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.) |
⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) | ||
Theorem | uniuni 7481* | Expression for double union that moves union into a class abstraction. (Contributed by FL, 28-May-2007.) |
⊢ ∪ ∪ 𝐴 = ∪ {𝑥 ∣ ∃𝑦(𝑥 = ∪ 𝑦 ∧ 𝑦 ∈ 𝐴)} | ||
Theorem | uniexr 7482 | Converse of the Axiom of Union. Note that it does not require ax-un 7457. (Contributed by NM, 11-Nov-2003.) |
⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) | ||
Theorem | uniexb 7483 | The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | ||
Theorem | pwexr 7484 | Converse of the Axiom of Power Sets. Note that it does not require ax-pow 5232. (Contributed by NM, 11-Nov-2003.) |
⊢ (𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V) | ||
Theorem | pwexb 7485 | The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | ||
Theorem | elpwpwel 7486 | A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | ||
Theorem | eldifpw 7487 | Membership in a power class difference. (Contributed by NM, 25-Mar-2007.) |
⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ ¬ 𝐶 ⊆ 𝐵) → (𝐴 ∪ 𝐶) ∈ (𝒫 (𝐵 ∪ 𝐶) ∖ 𝒫 𝐵)) | ||
Theorem | elpwun 7488 | Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) | ||
Theorem | pwuncl 7489 | Power classes are closed under union. (Contributed by AV, 27-Feb-2024.) |
⊢ ((𝐴 ∈ 𝒫 𝑋 ∧ 𝐵 ∈ 𝒫 𝑋) → (𝐴 ∪ 𝐵) ∈ 𝒫 𝑋) | ||
Theorem | iunpw 7490* | An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥) | ||
Theorem | fr3nr 7491 | A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) | ||
Theorem | epne3 7492 | A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
⊢ (( E Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵)) | ||
Theorem | dfwe2 7493* | Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | ||
Theorem | epweon 7494 | The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of [Mendelson] p. 244. (Contributed by NM, 1-Nov-2003.) |
⊢ E We On | ||
Theorem | ordon 7495 | The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
⊢ Ord On | ||
Theorem | onprc 7496 | No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7495), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
⊢ ¬ On ∈ V | ||
Theorem | ssorduni 7497 | The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | ||
Theorem | ssonuni 7498 | The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | ||
Theorem | ssonunii 7499 | The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) | ||
Theorem | ordeleqon 7500 | A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of [TakeutiZaring] p. 38 and its converse. (Contributed by NM, 1-Jun-2003.) |
⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |