Step | Hyp | Ref
| Expression |
1 | | eqeq2 2770 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑤 = 𝑦 ↔ 𝑤 = 𝐵)) |
2 | 1 | anbi2d 631 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ↔ (𝑧 = 𝑥 ∧ 𝑤 = 𝐵))) |
3 | 2 | imbi1d 345 |
. . . . 5
⊢ (𝑦 = 𝐵 → (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ ((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑))) |
4 | 3 | 2albidv 1924 |
. . . 4
⊢ (𝑦 = 𝐵 → (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑))) |
5 | | dfsbcq 3700 |
. . . . 5
⊢ (𝑦 = 𝐵 → ([𝑦 / 𝑤]𝜑 ↔ [𝐵 / 𝑤]𝜑)) |
6 | 5 | sbcbidv 3753 |
. . . 4
⊢ (𝑦 = 𝐵 → ([𝑥 / 𝑧][𝑦 / 𝑤]𝜑 ↔ [𝑥 / 𝑧][𝐵 / 𝑤]𝜑)) |
7 | 4, 6 | bibi12d 349 |
. . 3
⊢ (𝑦 = 𝐵 → ((∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ [𝑥 / 𝑧][𝑦 / 𝑤]𝜑) ↔ (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝑥 / 𝑧][𝐵 / 𝑤]𝜑))) |
8 | | eqeq2 2770 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑧 = 𝑥 ↔ 𝑧 = 𝐴)) |
9 | 8 | anbi1d 632 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵))) |
10 | 9 | imbi1d 345 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑) ↔ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑))) |
11 | 10 | 2albidv 1924 |
. . . 4
⊢ (𝑥 = 𝐴 → (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑) ↔ ∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑))) |
12 | | dfsbcq 3700 |
. . . 4
⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑧][𝐵 / 𝑤]𝜑 ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) |
13 | 11, 12 | bibi12d 349 |
. . 3
⊢ (𝑥 = 𝐴 → ((∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝑥 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))) |
14 | | vex 3413 |
. . . . 5
⊢ 𝑥 ∈ V |
15 | 14 | sbc6 3729 |
. . . 4
⊢
([𝑥 / 𝑧][𝑦 / 𝑤]𝜑 ↔ ∀𝑧(𝑧 = 𝑥 → [𝑦 / 𝑤]𝜑)) |
16 | | 19.21v 1940 |
. . . . . 6
⊢
(∀𝑤(𝑧 = 𝑥 → (𝑤 = 𝑦 → 𝜑)) ↔ (𝑧 = 𝑥 → ∀𝑤(𝑤 = 𝑦 → 𝜑))) |
17 | | impexp 454 |
. . . . . . 7
⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ (𝑧 = 𝑥 → (𝑤 = 𝑦 → 𝜑))) |
18 | 17 | albii 1821 |
. . . . . 6
⊢
(∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ ∀𝑤(𝑧 = 𝑥 → (𝑤 = 𝑦 → 𝜑))) |
19 | | vex 3413 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
20 | 19 | sbc6 3729 |
. . . . . . 7
⊢
([𝑦 / 𝑤]𝜑 ↔ ∀𝑤(𝑤 = 𝑦 → 𝜑)) |
21 | 20 | imbi2i 339 |
. . . . . 6
⊢ ((𝑧 = 𝑥 → [𝑦 / 𝑤]𝜑) ↔ (𝑧 = 𝑥 → ∀𝑤(𝑤 = 𝑦 → 𝜑))) |
22 | 16, 18, 21 | 3bitr4ri 307 |
. . . . 5
⊢ ((𝑧 = 𝑥 → [𝑦 / 𝑤]𝜑) ↔ ∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
23 | 22 | albii 1821 |
. . . 4
⊢
(∀𝑧(𝑧 = 𝑥 → [𝑦 / 𝑤]𝜑) ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
24 | 15, 23 | bitr2i 279 |
. . 3
⊢
(∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ [𝑥 / 𝑧][𝑦 / 𝑤]𝜑) |
25 | 7, 13, 24 | vtocl2g 3492 |
. 2
⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → (∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) |
26 | 25 | ancoms 462 |
1
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) |