| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqeq2 2748 | . . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑤 = 𝑦 ↔ 𝑤 = 𝐵)) | 
| 2 | 1 | anbi2d 630 | . . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ↔ (𝑧 = 𝑥 ∧ 𝑤 = 𝐵))) | 
| 3 | 2 | imbi1d 341 | . . . . 5
⊢ (𝑦 = 𝐵 → (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ ((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑))) | 
| 4 | 3 | 2albidv 1922 | . . . 4
⊢ (𝑦 = 𝐵 → (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑))) | 
| 5 |  | dfsbcq 3789 | . . . . 5
⊢ (𝑦 = 𝐵 → ([𝑦 / 𝑤]𝜑 ↔ [𝐵 / 𝑤]𝜑)) | 
| 6 | 5 | sbcbidv 3844 | . . . 4
⊢ (𝑦 = 𝐵 → ([𝑥 / 𝑧][𝑦 / 𝑤]𝜑 ↔ [𝑥 / 𝑧][𝐵 / 𝑤]𝜑)) | 
| 7 | 4, 6 | bibi12d 345 | . . 3
⊢ (𝑦 = 𝐵 → ((∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ [𝑥 / 𝑧][𝑦 / 𝑤]𝜑) ↔ (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝑥 / 𝑧][𝐵 / 𝑤]𝜑))) | 
| 8 |  | eqeq2 2748 | . . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑧 = 𝑥 ↔ 𝑧 = 𝐴)) | 
| 9 | 8 | anbi1d 631 | . . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵))) | 
| 10 | 9 | imbi1d 341 | . . . . 5
⊢ (𝑥 = 𝐴 → (((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑) ↔ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑))) | 
| 11 | 10 | 2albidv 1922 | . . . 4
⊢ (𝑥 = 𝐴 → (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑) ↔ ∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑))) | 
| 12 |  | dfsbcq 3789 | . . . 4
⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑧][𝐵 / 𝑤]𝜑 ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | 
| 13 | 11, 12 | bibi12d 345 | . . 3
⊢ (𝑥 = 𝐴 → ((∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝑥 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))) | 
| 14 |  | vex 3483 | . . . . 5
⊢ 𝑥 ∈ V | 
| 15 | 14 | sbc6 3818 | . . . 4
⊢
([𝑥 / 𝑧][𝑦 / 𝑤]𝜑 ↔ ∀𝑧(𝑧 = 𝑥 → [𝑦 / 𝑤]𝜑)) | 
| 16 |  | 19.21v 1938 | . . . . . 6
⊢
(∀𝑤(𝑧 = 𝑥 → (𝑤 = 𝑦 → 𝜑)) ↔ (𝑧 = 𝑥 → ∀𝑤(𝑤 = 𝑦 → 𝜑))) | 
| 17 |  | impexp 450 | . . . . . . 7
⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ (𝑧 = 𝑥 → (𝑤 = 𝑦 → 𝜑))) | 
| 18 | 17 | albii 1818 | . . . . . 6
⊢
(∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ ∀𝑤(𝑧 = 𝑥 → (𝑤 = 𝑦 → 𝜑))) | 
| 19 |  | vex 3483 | . . . . . . . 8
⊢ 𝑦 ∈ V | 
| 20 | 19 | sbc6 3818 | . . . . . . 7
⊢
([𝑦 / 𝑤]𝜑 ↔ ∀𝑤(𝑤 = 𝑦 → 𝜑)) | 
| 21 | 20 | imbi2i 336 | . . . . . 6
⊢ ((𝑧 = 𝑥 → [𝑦 / 𝑤]𝜑) ↔ (𝑧 = 𝑥 → ∀𝑤(𝑤 = 𝑦 → 𝜑))) | 
| 22 | 16, 18, 21 | 3bitr4ri 304 | . . . . 5
⊢ ((𝑧 = 𝑥 → [𝑦 / 𝑤]𝜑) ↔ ∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) | 
| 23 | 22 | albii 1818 | . . . 4
⊢
(∀𝑧(𝑧 = 𝑥 → [𝑦 / 𝑤]𝜑) ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) | 
| 24 | 15, 23 | bitr2i 276 | . . 3
⊢
(∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ [𝑥 / 𝑧][𝑦 / 𝑤]𝜑) | 
| 25 | 7, 13, 24 | vtocl2g 3573 | . 2
⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → (∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | 
| 26 | 25 | ancoms 458 | 1
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑧∀𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) |