|   | Mathbox for Andrew Salmon | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm14.122a | Structured version Visualization version GIF version | ||
| Description: Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| pm14.122a | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | albiim 1889 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | |
| 2 | sbc6g 3818 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | |
| 3 | 2 | bicomd 223 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ [𝐴 / 𝑥]𝜑)) | 
| 4 | 3 | anbi2d 630 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑))) | 
| 5 | 1, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 [wsbc 3788 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-sbc 3789 | 
| This theorem is referenced by: pm14.122c 44443 | 
| Copyright terms: Public domain | W3C validator |