Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.12 Structured version   Visualization version   GIF version

Theorem pm14.12 44460
Description: Theorem *14.12 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
pm14.12 (∃!𝑥𝜑 → ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem pm14.12
StepHypRef Expression
1 eumo 2573 . 2 (∃!𝑥𝜑 → ∃*𝑥𝜑)
2 nfv 1915 . . . 4 𝑦𝜑
32mo3 2559 . . 3 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
4 sbsbc 3745 . . . . . 6 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
54anbi2i 623 . . . . 5 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑[𝑦 / 𝑥]𝜑))
65imbi1i 349 . . . 4 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
762albii 1821 . . 3 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
83, 7bitri 275 . 2 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
91, 8sylib 218 1 (∃!𝑥𝜑 → ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  [wsb 2067  ∃*wmo 2533  ∃!weu 2563  [wsbc 3741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-sbc 3742
This theorem is referenced by:  pm14.24  44471
  Copyright terms: Public domain W3C validator