![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm14.12 | Structured version Visualization version GIF version |
Description: Theorem *14.12 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
pm14.12 | ⊢ (∃!𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2566 | . 2 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
2 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | 2 | mo3 2552 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
4 | sbsbc 3776 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
5 | 4 | anbi2i 622 | . . . . 5 ⊢ ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
6 | 5 | imbi1i 349 | . . . 4 ⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
7 | 6 | 2albii 1814 | . . 3 ⊢ (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
8 | 3, 7 | bitri 275 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
9 | 1, 8 | sylib 217 | 1 ⊢ (∃!𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 [wsb 2059 ∃*wmo 2526 ∃!weu 2556 [wsbc 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-sbc 3773 |
This theorem is referenced by: pm14.24 43749 |
Copyright terms: Public domain | W3C validator |