Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.12 Structured version   Visualization version   GIF version

Theorem pm14.12 44417
Description: Theorem *14.12 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
pm14.12 (∃!𝑥𝜑 → ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem pm14.12
StepHypRef Expression
1 eumo 2576 . 2 (∃!𝑥𝜑 → ∃*𝑥𝜑)
2 nfv 1912 . . . 4 𝑦𝜑
32mo3 2562 . . 3 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
4 sbsbc 3795 . . . . . 6 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
54anbi2i 623 . . . . 5 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑[𝑦 / 𝑥]𝜑))
65imbi1i 349 . . . 4 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
762albii 1817 . . 3 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
83, 7bitri 275 . 2 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
91, 8sylib 218 1 (∃!𝑥𝜑 → ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  [wsb 2062  ∃*wmo 2536  ∃!weu 2566  [wsbc 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-sbc 3792
This theorem is referenced by:  pm14.24  44428
  Copyright terms: Public domain W3C validator