Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.122c Structured version   Visualization version   GIF version

Theorem pm14.122c 44393
Description: Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
Assertion
Ref Expression
pm14.122c (𝐴𝑉 → (∀𝑥(𝜑𝑥 = 𝐴) ↔ (∀𝑥(𝜑𝑥 = 𝐴) ∧ ∃𝑥𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem pm14.122c
StepHypRef Expression
1 pm14.122a 44391 . 2 (𝐴𝑉 → (∀𝑥(𝜑𝑥 = 𝐴) ↔ (∀𝑥(𝜑𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑)))
2 pm14.122b 44392 . 2 (𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑) ↔ (∀𝑥(𝜑𝑥 = 𝐴) ∧ ∃𝑥𝜑)))
31, 2bitrd 279 1 (𝐴𝑉 → (∀𝑥(𝜑𝑥 = 𝐴) ↔ (∀𝑥(𝜑𝑥 = 𝐴) ∧ ∃𝑥𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator