Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.123a Structured version   Visualization version   GIF version

Theorem pm14.123a 42271
Description: Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
Assertion
Ref Expression
pm14.123a ((𝐴𝑉𝐵𝑊) → (∀𝑧𝑤(𝜑 ↔ (𝑧 = 𝐴𝑤 = 𝐵)) ↔ (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)))
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑉(𝑧,𝑤)   𝑊(𝑧,𝑤)

Proof of Theorem pm14.123a
StepHypRef Expression
1 2albiim 1892 . 2 (∀𝑧𝑤(𝜑 ↔ (𝑧 = 𝐴𝑤 = 𝐵)) ↔ (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ ∀𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) → 𝜑)))
2 2sbc6g 42261 . . 3 ((𝐴𝑉𝐵𝑊) → (∀𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
32anbi2d 629 . 2 ((𝐴𝑉𝐵𝑊) → ((∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ ∀𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) → 𝜑)) ↔ (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)))
41, 3bitrid 282 1 ((𝐴𝑉𝐵𝑊) → (∀𝑧𝑤(𝜑 ↔ (𝑧 = 𝐴𝑤 = 𝐵)) ↔ (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1538   = wceq 1540  wcel 2105  [wsbc 3725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3443  df-sbc 3726
This theorem is referenced by:  pm14.123c  42273
  Copyright terms: Public domain W3C validator