Proof of Theorem pm14.123b
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2sbc5g 44435 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑧∃𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | 
| 2 | 1 | adantr 480 | . . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵))) → (∃𝑧∃𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)) | 
| 3 |  | nfa1 2151 | . . . . 5
⊢
Ⅎ𝑧∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) | 
| 4 |  | nfa2 2176 | . . . . . 6
⊢
Ⅎ𝑤∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) | 
| 5 |  | simpr 484 | . . . . . . 7
⊢ (((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) → 𝜑) | 
| 6 |  | 2sp 2186 | . . . . . . . 8
⊢
(∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) → (𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵))) | 
| 7 | 6 | ancrd 551 | . . . . . . 7
⊢
(∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) → (𝜑 → ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑))) | 
| 8 | 5, 7 | impbid2 226 | . . . . . 6
⊢
(∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) → (((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) ↔ 𝜑)) | 
| 9 | 4, 8 | exbid 2223 | . . . . 5
⊢
(∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) → (∃𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) ↔ ∃𝑤𝜑)) | 
| 10 | 3, 9 | exbid 2223 | . . . 4
⊢
(∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) → (∃𝑧∃𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) ↔ ∃𝑧∃𝑤𝜑)) | 
| 11 | 10 | adantl 481 | . . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵))) → (∃𝑧∃𝑤((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ 𝜑) ↔ ∃𝑧∃𝑤𝜑)) | 
| 12 | 2, 11 | bitr3d 281 | . 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵))) → ([𝐴 / 𝑧][𝐵 / 𝑤]𝜑 ↔ ∃𝑧∃𝑤𝜑)) | 
| 13 | 12 | pm5.32da 579 | 1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) |