| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm14.123c | Structured version Visualization version GIF version | ||
| Description: Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
| Ref | Expression |
|---|---|
| pm14.123c | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm14.123a 44457 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))) | |
| 2 | pm14.123b 44458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) | |
| 3 | 1, 2 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑧∀𝑤(𝜑 ↔ (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ↔ (∀𝑧∀𝑤(𝜑 → (𝑧 = 𝐴 ∧ 𝑤 = 𝐵)) ∧ ∃𝑧∃𝑤𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |