MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc11 Structured version   Visualization version   GIF version

Theorem suc11 6354
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
suc11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))

Proof of Theorem suc11
StepHypRef Expression
1 eloni 6261 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
2 ordn2lp 6271 . . . . 5 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
3 pm3.13 991 . . . . 5 (¬ (𝐴𝐵𝐵𝐴) → (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
41, 2, 33syl 18 . . . 4 (𝐴 ∈ On → (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
54adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
6 eqimss 3973 . . . . . 6 (suc 𝐴 = suc 𝐵 → suc 𝐴 ⊆ suc 𝐵)
7 sucssel 6343 . . . . . 6 (𝐴 ∈ On → (suc 𝐴 ⊆ suc 𝐵𝐴 ∈ suc 𝐵))
86, 7syl5 34 . . . . 5 (𝐴 ∈ On → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
9 elsuci 6317 . . . . . . 7 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
109ord 860 . . . . . 6 (𝐴 ∈ suc 𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
1110com12 32 . . . . 5 𝐴𝐵 → (𝐴 ∈ suc 𝐵𝐴 = 𝐵))
128, 11syl9 77 . . . 4 (𝐴 ∈ On → (¬ 𝐴𝐵 → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
13 eqimss2 3974 . . . . . 6 (suc 𝐴 = suc 𝐵 → suc 𝐵 ⊆ suc 𝐴)
14 sucssel 6343 . . . . . 6 (𝐵 ∈ On → (suc 𝐵 ⊆ suc 𝐴𝐵 ∈ suc 𝐴))
1513, 14syl5 34 . . . . 5 (𝐵 ∈ On → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
16 elsuci 6317 . . . . . . . 8 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
1716ord 860 . . . . . . 7 (𝐵 ∈ suc 𝐴 → (¬ 𝐵𝐴𝐵 = 𝐴))
18 eqcom 2745 . . . . . . 7 (𝐵 = 𝐴𝐴 = 𝐵)
1917, 18syl6ib 250 . . . . . 6 (𝐵 ∈ suc 𝐴 → (¬ 𝐵𝐴𝐴 = 𝐵))
2019com12 32 . . . . 5 𝐵𝐴 → (𝐵 ∈ suc 𝐴𝐴 = 𝐵))
2115, 20syl9 77 . . . 4 (𝐵 ∈ On → (¬ 𝐵𝐴 → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
2212, 21jaao 951 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
235, 22mpd 15 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
24 suceq 6316 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
2523, 24impbid1 224 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wss 3883  Ord word 6250  Oncon0 6251  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257
This theorem is referenced by:  peano4  7713  limenpsi  8888  fin1a2lem2  10088  bnj168  32609  sltval2  33786  sltsolem1  33805  nosepnelem  33809  nolt02o  33825  onsuct0  34557  1oequni2o  35466
  Copyright terms: Public domain W3C validator