Proof of Theorem suc11
| Step | Hyp | Ref
| Expression |
| 1 | | eloni 6394 |
. . . . 5
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 2 | | ordn2lp 6404 |
. . . . 5
⊢ (Ord
𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
| 3 | | pm3.13 997 |
. . . . 5
⊢ (¬
(𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴)) |
| 4 | 1, 2, 3 | 3syl 18 |
. . . 4
⊢ (𝐴 ∈ On → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴)) |
| 5 | 4 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴)) |
| 6 | | eqimss 4042 |
. . . . . 6
⊢ (suc
𝐴 = suc 𝐵 → suc 𝐴 ⊆ suc 𝐵) |
| 7 | | sucssel 6479 |
. . . . . 6
⊢ (𝐴 ∈ On → (suc 𝐴 ⊆ suc 𝐵 → 𝐴 ∈ suc 𝐵)) |
| 8 | 6, 7 | syl5 34 |
. . . . 5
⊢ (𝐴 ∈ On → (suc 𝐴 = suc 𝐵 → 𝐴 ∈ suc 𝐵)) |
| 9 | | elsuci 6451 |
. . . . . . 7
⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| 10 | 9 | ord 865 |
. . . . . 6
⊢ (𝐴 ∈ suc 𝐵 → (¬ 𝐴 ∈ 𝐵 → 𝐴 = 𝐵)) |
| 11 | 10 | com12 32 |
. . . . 5
⊢ (¬
𝐴 ∈ 𝐵 → (𝐴 ∈ suc 𝐵 → 𝐴 = 𝐵)) |
| 12 | 8, 11 | syl9 77 |
. . . 4
⊢ (𝐴 ∈ On → (¬ 𝐴 ∈ 𝐵 → (suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵))) |
| 13 | | eqimss2 4043 |
. . . . . 6
⊢ (suc
𝐴 = suc 𝐵 → suc 𝐵 ⊆ suc 𝐴) |
| 14 | | sucssel 6479 |
. . . . . 6
⊢ (𝐵 ∈ On → (suc 𝐵 ⊆ suc 𝐴 → 𝐵 ∈ suc 𝐴)) |
| 15 | 13, 14 | syl5 34 |
. . . . 5
⊢ (𝐵 ∈ On → (suc 𝐴 = suc 𝐵 → 𝐵 ∈ suc 𝐴)) |
| 16 | | elsuci 6451 |
. . . . . . . 8
⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
| 17 | 16 | ord 865 |
. . . . . . 7
⊢ (𝐵 ∈ suc 𝐴 → (¬ 𝐵 ∈ 𝐴 → 𝐵 = 𝐴)) |
| 18 | | eqcom 2744 |
. . . . . . 7
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
| 19 | 17, 18 | imbitrdi 251 |
. . . . . 6
⊢ (𝐵 ∈ suc 𝐴 → (¬ 𝐵 ∈ 𝐴 → 𝐴 = 𝐵)) |
| 20 | 19 | com12 32 |
. . . . 5
⊢ (¬
𝐵 ∈ 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐴 = 𝐵)) |
| 21 | 15, 20 | syl9 77 |
. . . 4
⊢ (𝐵 ∈ On → (¬ 𝐵 ∈ 𝐴 → (suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵))) |
| 22 | 12, 21 | jaao 957 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴) → (suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵))) |
| 23 | 5, 22 | mpd 15 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵)) |
| 24 | | suceq 6450 |
. 2
⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
| 25 | 23, 24 | impbid1 225 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) |