MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc11 Structured version   Visualization version   GIF version

Theorem suc11 6415
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
suc11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))

Proof of Theorem suc11
StepHypRef Expression
1 eloni 6316 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
2 ordn2lp 6326 . . . . 5 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
3 pm3.13 996 . . . . 5 (¬ (𝐴𝐵𝐵𝐴) → (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
41, 2, 33syl 18 . . . 4 (𝐴 ∈ On → (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
54adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
6 eqimss 3988 . . . . . 6 (suc 𝐴 = suc 𝐵 → suc 𝐴 ⊆ suc 𝐵)
7 sucssel 6403 . . . . . 6 (𝐴 ∈ On → (suc 𝐴 ⊆ suc 𝐵𝐴 ∈ suc 𝐵))
86, 7syl5 34 . . . . 5 (𝐴 ∈ On → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
9 elsuci 6375 . . . . . . 7 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
109ord 864 . . . . . 6 (𝐴 ∈ suc 𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
1110com12 32 . . . . 5 𝐴𝐵 → (𝐴 ∈ suc 𝐵𝐴 = 𝐵))
128, 11syl9 77 . . . 4 (𝐴 ∈ On → (¬ 𝐴𝐵 → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
13 eqimss2 3989 . . . . . 6 (suc 𝐴 = suc 𝐵 → suc 𝐵 ⊆ suc 𝐴)
14 sucssel 6403 . . . . . 6 (𝐵 ∈ On → (suc 𝐵 ⊆ suc 𝐴𝐵 ∈ suc 𝐴))
1513, 14syl5 34 . . . . 5 (𝐵 ∈ On → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
16 elsuci 6375 . . . . . . . 8 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
1716ord 864 . . . . . . 7 (𝐵 ∈ suc 𝐴 → (¬ 𝐵𝐴𝐵 = 𝐴))
18 eqcom 2738 . . . . . . 7 (𝐵 = 𝐴𝐴 = 𝐵)
1917, 18imbitrdi 251 . . . . . 6 (𝐵 ∈ suc 𝐴 → (¬ 𝐵𝐴𝐴 = 𝐵))
2019com12 32 . . . . 5 𝐵𝐴 → (𝐵 ∈ suc 𝐴𝐴 = 𝐵))
2115, 20syl9 77 . . . 4 (𝐵 ∈ On → (¬ 𝐵𝐴 → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
2212, 21jaao 956 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
235, 22mpd 15 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
24 suceq 6374 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
2523, 24impbid1 225 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wss 3897  Ord word 6305  Oncon0 6306  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-suc 6312
This theorem is referenced by:  peano4  7822  limenpsi  9065  fin1a2lem2  10292  sltval2  27595  sltsolem1  27614  nosepnelem  27618  nolt02o  27634  bnj168  34742  onsuct0  36485  1oequni2o  37412  onsucf1lem  43372  onsucf1o  43375
  Copyright terms: Public domain W3C validator