MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc11 Structured version   Visualization version   GIF version

Theorem suc11 6491
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
suc11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))

Proof of Theorem suc11
StepHypRef Expression
1 eloni 6394 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
2 ordn2lp 6404 . . . . 5 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
3 pm3.13 997 . . . . 5 (¬ (𝐴𝐵𝐵𝐴) → (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
41, 2, 33syl 18 . . . 4 (𝐴 ∈ On → (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
54adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
6 eqimss 4042 . . . . . 6 (suc 𝐴 = suc 𝐵 → suc 𝐴 ⊆ suc 𝐵)
7 sucssel 6479 . . . . . 6 (𝐴 ∈ On → (suc 𝐴 ⊆ suc 𝐵𝐴 ∈ suc 𝐵))
86, 7syl5 34 . . . . 5 (𝐴 ∈ On → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
9 elsuci 6451 . . . . . . 7 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
109ord 865 . . . . . 6 (𝐴 ∈ suc 𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
1110com12 32 . . . . 5 𝐴𝐵 → (𝐴 ∈ suc 𝐵𝐴 = 𝐵))
128, 11syl9 77 . . . 4 (𝐴 ∈ On → (¬ 𝐴𝐵 → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
13 eqimss2 4043 . . . . . 6 (suc 𝐴 = suc 𝐵 → suc 𝐵 ⊆ suc 𝐴)
14 sucssel 6479 . . . . . 6 (𝐵 ∈ On → (suc 𝐵 ⊆ suc 𝐴𝐵 ∈ suc 𝐴))
1513, 14syl5 34 . . . . 5 (𝐵 ∈ On → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
16 elsuci 6451 . . . . . . . 8 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
1716ord 865 . . . . . . 7 (𝐵 ∈ suc 𝐴 → (¬ 𝐵𝐴𝐵 = 𝐴))
18 eqcom 2744 . . . . . . 7 (𝐵 = 𝐴𝐴 = 𝐵)
1917, 18imbitrdi 251 . . . . . 6 (𝐵 ∈ suc 𝐴 → (¬ 𝐵𝐴𝐴 = 𝐵))
2019com12 32 . . . . 5 𝐵𝐴 → (𝐵 ∈ suc 𝐴𝐴 = 𝐵))
2115, 20syl9 77 . . . 4 (𝐵 ∈ On → (¬ 𝐵𝐴 → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
2212, 21jaao 957 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
235, 22mpd 15 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
24 suceq 6450 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
2523, 24impbid1 225 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wss 3951  Ord word 6383  Oncon0 6384  suc csuc 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388  df-suc 6390
This theorem is referenced by:  peano4  7914  limenpsi  9192  fin1a2lem2  10441  sltval2  27701  sltsolem1  27720  nosepnelem  27724  nolt02o  27740  bnj168  34744  onsuct0  36442  1oequni2o  37369  onsucf1lem  43282  onsucf1o  43285
  Copyright terms: Public domain W3C validator