| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifcomnan | Structured version Visualization version GIF version | ||
| Description: Commute the conditions in two nested conditionals if both conditions are not simultaneously true. (Contributed by SO, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| ifcomnan | ⊢ (¬ (𝜑 ∧ 𝜓) → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.13 996 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 2 | iffalse 4516 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, 𝐶)) | |
| 3 | iffalse 4516 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐶) | |
| 4 | 3 | ifeq2d 4528 | . . . 4 ⊢ (¬ 𝜑 → if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶)) = if(𝜓, 𝐵, 𝐶)) |
| 5 | 2, 4 | eqtr4d 2772 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
| 6 | iffalse 4516 | . . . . 5 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
| 7 | 6 | ifeq2d 4528 | . . . 4 ⊢ (¬ 𝜓 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜑, 𝐴, 𝐶)) |
| 8 | iffalse 4516 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶)) = if(𝜑, 𝐴, 𝐶)) | |
| 9 | 7, 8 | eqtr4d 2772 | . . 3 ⊢ (¬ 𝜓 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
| 10 | 5, 9 | jaoi 857 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
| 11 | 1, 10 | syl 17 | 1 ⊢ (¬ (𝜑 ∧ 𝜓) → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ifcif 4507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-un 3938 df-if 4508 |
| This theorem is referenced by: mdetunilem6 22590 |
| Copyright terms: Public domain | W3C validator |