Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifcomnan | Structured version Visualization version GIF version |
Description: Commute the conditions in two nested conditionals if both conditions are not simultaneously true. (Contributed by SO, 15-Jul-2018.) |
Ref | Expression |
---|---|
ifcomnan | ⊢ (¬ (𝜑 ∧ 𝜓) → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.13 991 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) | |
2 | iffalse 4465 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, 𝐶)) | |
3 | iffalse 4465 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐶) | |
4 | 3 | ifeq2d 4476 | . . . 4 ⊢ (¬ 𝜑 → if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶)) = if(𝜓, 𝐵, 𝐶)) |
5 | 2, 4 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
6 | iffalse 4465 | . . . . 5 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
7 | 6 | ifeq2d 4476 | . . . 4 ⊢ (¬ 𝜓 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜑, 𝐴, 𝐶)) |
8 | iffalse 4465 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶)) = if(𝜑, 𝐴, 𝐶)) | |
9 | 7, 8 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝜓 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
10 | 5, 9 | jaoi 853 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
11 | 1, 10 | syl 17 | 1 ⊢ (¬ (𝜑 ∧ 𝜓) → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, if(𝜑, 𝐴, 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-if 4457 |
This theorem is referenced by: mdetunilem6 21674 |
Copyright terms: Public domain | W3C validator |