Step | Hyp | Ref
| Expression |
1 | | sbcal 3784 |
. . 3
⊢
([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
2 | | sbcal 3784 |
. . . . 5
⊢
([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
3 | | sbcim2g 42111 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)))) |
4 | | sbcg 3799 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)) |
5 | | sbcel2gv 3792 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴)) |
6 | | sbcel2gv 3792 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴)) |
7 | | imbi13 42093 |
. . . . . . . . 9
⊢
(([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦) → (([𝐴 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴) → (([𝐴 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴) → (([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))))) |
8 | 4, 5, 6, 7 | syl3c 66 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))) |
9 | 3, 8 | bitrd 278 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))) |
10 | | pm3.31 449 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
11 | | pm3.3 448 |
. . . . . . . . 9
⊢ (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) → (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥))) |
12 | 10, 11 | impbii 208 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
13 | 12 | sbcbii 3780 |
. . . . . . 7
⊢
([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ [𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
14 | | pm3.31 449 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
15 | | pm3.3 448 |
. . . . . . . 8
⊢ (((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴))) |
16 | 14, 15 | impbii 208 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
17 | 9, 13, 16 | 3bitr3g 312 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))) |
18 | 17 | albidv 1926 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))) |
19 | 2, 18 | syl5bb 282 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))) |
20 | 19 | albidv 1926 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))) |
21 | 1, 20 | syl5bb 282 |
. 2
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))) |
22 | | dftr2 5197 |
. . 3
⊢ (Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
23 | 22 | sbcbii 3780 |
. 2
⊢
([𝐴 / 𝑥]Tr 𝑥 ↔ [𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
24 | | dftr2 5197 |
. 2
⊢ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
25 | 21, 23, 24 | 3bitr4g 313 |
1
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)) |