| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | inss2 4238 | . . . 4
⊢ ( ≤ ∩
◡ ≤ ) ⊆ ◡ ≤ | 
| 2 |  | relcnv 6122 | . . . 4
⊢ Rel ◡ ≤ | 
| 3 |  | relss 5791 | . . . 4
⊢ (( ≤ ∩
◡ ≤ ) ⊆ ◡ ≤ → (Rel ◡ ≤ → Rel ( ≤ ∩
◡ ≤ ))) | 
| 4 | 1, 2, 3 | mp2 9 | . . 3
⊢ Rel (
≤
∩ ◡ ≤ ) | 
| 5 | 4 | a1i 11 | . 2
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → Rel ( ≤ ∩ ◡ ≤ )) | 
| 6 |  | eqidd 2738 | . 2
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → dom ( ≤ ∩ ◡ ≤ ) = dom ( ≤ ∩
◡ ≤ )) | 
| 7 |  | brin 5195 | . . . . . . . 8
⊢ (𝑟( ≤ ∩ ◡ ≤ )𝑠 ↔ (𝑟 ≤ 𝑠 ∧ 𝑟◡
≤
𝑠)) | 
| 8 |  | vex 3484 | . . . . . . . . . 10
⊢ 𝑟 ∈ V | 
| 9 |  | vex 3484 | . . . . . . . . . 10
⊢ 𝑠 ∈ V | 
| 10 | 8, 9 | brcnv 5893 | . . . . . . . . 9
⊢ (𝑟◡ ≤ 𝑠 ↔ 𝑠 ≤ 𝑟) | 
| 11 | 10 | anbi2i 623 | . . . . . . . 8
⊢ ((𝑟 ≤ 𝑠 ∧ 𝑟◡
≤
𝑠) ↔ (𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟)) | 
| 12 | 7, 11 | bitri 275 | . . . . . . 7
⊢ (𝑟( ≤ ∩ ◡ ≤ )𝑠 ↔ (𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟)) | 
| 13 |  | brin 5195 | . . . . . . . 8
⊢ (𝑠( ≤ ∩ ◡ ≤ )𝑡 ↔ (𝑠 ≤ 𝑡 ∧ 𝑠◡
≤
𝑡)) | 
| 14 |  | vex 3484 | . . . . . . . . . 10
⊢ 𝑡 ∈ V | 
| 15 | 9, 14 | brcnv 5893 | . . . . . . . . 9
⊢ (𝑠◡ ≤ 𝑡 ↔ 𝑡 ≤ 𝑠) | 
| 16 | 15 | anbi2i 623 | . . . . . . . 8
⊢ ((𝑠 ≤ 𝑡 ∧ 𝑠◡
≤
𝑡) ↔ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) | 
| 17 | 13, 16 | bitri 275 | . . . . . . 7
⊢ (𝑠( ≤ ∩ ◡ ≤ )𝑡 ↔ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) | 
| 18 | 12, 17 | anbi12i 628 | . . . . . 6
⊢ ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) ↔ ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠))) | 
| 19 |  | breq1 5146 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑟 → (𝑎 ≤ 𝑏 ↔ 𝑟 ≤ 𝑏)) | 
| 20 | 19 | anbi1d 631 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑟 → ((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) ↔ (𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐))) | 
| 21 |  | breq1 5146 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑟 → (𝑎 ≤ 𝑐 ↔ 𝑟 ≤ 𝑐)) | 
| 22 | 20, 21 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑟 → (((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) ↔ ((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐))) | 
| 23 | 22 | 2albidv 1923 | . . . . . . . . . 10
⊢ (𝑎 = 𝑟 → (∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) ↔ ∀𝑏∀𝑐((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐))) | 
| 24 | 23 | spvv 1996 | . . . . . . . . 9
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ∀𝑏∀𝑐((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐)) | 
| 25 |  | breq2 5147 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝑠 → (𝑟 ≤ 𝑏 ↔ 𝑟 ≤ 𝑠)) | 
| 26 |  | breq1 5146 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝑠 → (𝑏 ≤ 𝑐 ↔ 𝑠 ≤ 𝑐)) | 
| 27 | 25, 26 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑠 → ((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) ↔ (𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐))) | 
| 28 | 27 | imbi1d 341 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑠 → (((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐) ↔ ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑟 ≤ 𝑐))) | 
| 29 | 28 | albidv 1920 | . . . . . . . . . 10
⊢ (𝑏 = 𝑠 → (∀𝑐((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐) ↔ ∀𝑐((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑟 ≤ 𝑐))) | 
| 30 | 29 | spvv 1996 | . . . . . . . . 9
⊢
(∀𝑏∀𝑐((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐) → ∀𝑐((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑟 ≤ 𝑐)) | 
| 31 |  | breq2 5147 | . . . . . . . . . . . 12
⊢ (𝑐 = 𝑡 → (𝑠 ≤ 𝑐 ↔ 𝑠 ≤ 𝑡)) | 
| 32 | 31 | anbi2d 630 | . . . . . . . . . . 11
⊢ (𝑐 = 𝑡 → ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) ↔ (𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡))) | 
| 33 |  | breq2 5147 | . . . . . . . . . . 11
⊢ (𝑐 = 𝑡 → (𝑟 ≤ 𝑐 ↔ 𝑟 ≤ 𝑡)) | 
| 34 | 32, 33 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑐 = 𝑡 → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑟 ≤ 𝑐) ↔ ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡))) | 
| 35 | 34 | spvv 1996 | . . . . . . . . 9
⊢
(∀𝑐((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑟 ≤ 𝑐) → ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡)) | 
| 36 |  | pm3.3 448 | . . . . . . . . . . . . . 14
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → (𝑟 ≤ 𝑠 → (𝑠 ≤ 𝑡 → 𝑟 ≤ 𝑡))) | 
| 37 | 36 | com23 86 | . . . . . . . . . . . . 13
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → (𝑠 ≤ 𝑡 → (𝑟 ≤ 𝑠 → 𝑟 ≤ 𝑡))) | 
| 38 | 37 | adantrd 491 | . . . . . . . . . . . 12
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → (𝑟 ≤ 𝑠 → 𝑟 ≤ 𝑡))) | 
| 39 | 38 | com23 86 | . . . . . . . . . . 11
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → (𝑟 ≤ 𝑠 → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → 𝑟 ≤ 𝑡))) | 
| 40 | 39 | adantrd 491 | . . . . . . . . . 10
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → 𝑟 ≤ 𝑡))) | 
| 41 | 40 | impd 410 | . . . . . . . . 9
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → 𝑟 ≤ 𝑡)) | 
| 42 | 24, 30, 35, 41 | 4syl 19 | . . . . . . . 8
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → 𝑟 ≤ 𝑡)) | 
| 43 |  | breq1 5146 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑡 → (𝑎 ≤ 𝑏 ↔ 𝑡 ≤ 𝑏)) | 
| 44 | 43 | anbi1d 631 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑡 → ((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) ↔ (𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐))) | 
| 45 |  | breq1 5146 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑡 → (𝑎 ≤ 𝑐 ↔ 𝑡 ≤ 𝑐)) | 
| 46 | 44, 45 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑡 → (((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) ↔ ((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐))) | 
| 47 | 46 | 2albidv 1923 | . . . . . . . . . 10
⊢ (𝑎 = 𝑡 → (∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) ↔ ∀𝑏∀𝑐((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐))) | 
| 48 | 47 | spvv 1996 | . . . . . . . . 9
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ∀𝑏∀𝑐((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐)) | 
| 49 |  | breq2 5147 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝑠 → (𝑡 ≤ 𝑏 ↔ 𝑡 ≤ 𝑠)) | 
| 50 | 49, 26 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑠 → ((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) ↔ (𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐))) | 
| 51 | 50 | imbi1d 341 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑠 → (((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐) ↔ ((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑡 ≤ 𝑐))) | 
| 52 | 51 | albidv 1920 | . . . . . . . . . 10
⊢ (𝑏 = 𝑠 → (∀𝑐((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐) ↔ ∀𝑐((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑡 ≤ 𝑐))) | 
| 53 | 52 | spvv 1996 | . . . . . . . . 9
⊢
(∀𝑏∀𝑐((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐) → ∀𝑐((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑡 ≤ 𝑐)) | 
| 54 |  | breq2 5147 | . . . . . . . . . . . 12
⊢ (𝑐 = 𝑟 → (𝑠 ≤ 𝑐 ↔ 𝑠 ≤ 𝑟)) | 
| 55 | 54 | anbi2d 630 | . . . . . . . . . . 11
⊢ (𝑐 = 𝑟 → ((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) ↔ (𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟))) | 
| 56 |  | breq2 5147 | . . . . . . . . . . 11
⊢ (𝑐 = 𝑟 → (𝑡 ≤ 𝑐 ↔ 𝑡 ≤ 𝑟)) | 
| 57 | 55, 56 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑐 = 𝑟 → (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑡 ≤ 𝑐) ↔ ((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟))) | 
| 58 | 57 | spvv 1996 | . . . . . . . . 9
⊢
(∀𝑐((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑡 ≤ 𝑐) → ((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟)) | 
| 59 |  | pm3.3 448 | . . . . . . . . . . . . 13
⊢ (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟) → (𝑡 ≤ 𝑠 → (𝑠 ≤ 𝑟 → 𝑡 ≤ 𝑟))) | 
| 60 | 59 | adantld 490 | . . . . . . . . . . . 12
⊢ (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟) → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → (𝑠 ≤ 𝑟 → 𝑡 ≤ 𝑟))) | 
| 61 | 60 | com23 86 | . . . . . . . . . . 11
⊢ (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟) → (𝑠 ≤ 𝑟 → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → 𝑡 ≤ 𝑟))) | 
| 62 | 61 | adantld 490 | . . . . . . . . . 10
⊢ (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟) → ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → 𝑡 ≤ 𝑟))) | 
| 63 | 62 | impd 410 | . . . . . . . . 9
⊢ (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → 𝑡 ≤ 𝑟)) | 
| 64 | 48, 53, 58, 63 | 4syl 19 | . . . . . . . 8
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → 𝑡 ≤ 𝑟)) | 
| 65 | 42, 64 | jcad 512 | . . . . . . 7
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → (𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟))) | 
| 66 |  | brin 5195 | . . . . . . . 8
⊢ (𝑟( ≤ ∩ ◡ ≤ )𝑡 ↔ (𝑟 ≤ 𝑡 ∧ 𝑟◡
≤
𝑡)) | 
| 67 | 8, 14 | brcnv 5893 | . . . . . . . . 9
⊢ (𝑟◡ ≤ 𝑡 ↔ 𝑡 ≤ 𝑟) | 
| 68 | 67 | anbi2i 623 | . . . . . . . 8
⊢ ((𝑟 ≤ 𝑡 ∧ 𝑟◡
≤
𝑡) ↔ (𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟)) | 
| 69 | 66, 68 | bitr2i 276 | . . . . . . 7
⊢ ((𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟) ↔ 𝑟( ≤ ∩ ◡ ≤ )𝑡) | 
| 70 | 65, 69 | imbitrdi 251 | . . . . . 6
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → 𝑟( ≤ ∩ ◡ ≤ )𝑡)) | 
| 71 | 18, 70 | biimtrid 242 | . . . . 5
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) → 𝑟( ≤ ∩ ◡ ≤ )𝑡)) | 
| 72 | 9, 8 | brcnv 5893 | . . . . . . . . 9
⊢ (𝑠◡ ≤ 𝑟 ↔ 𝑟 ≤ 𝑠) | 
| 73 | 72 | bicomi 224 | . . . . . . . 8
⊢ (𝑟 ≤ 𝑠 ↔ 𝑠◡
≤
𝑟) | 
| 74 | 73, 10 | anbi12ci 629 | . . . . . . 7
⊢ ((𝑟 ≤ 𝑠 ∧ 𝑟◡
≤
𝑠) ↔ (𝑠 ≤ 𝑟 ∧ 𝑠◡
≤
𝑟)) | 
| 75 |  | brin 5195 | . . . . . . 7
⊢ (𝑠( ≤ ∩ ◡ ≤ )𝑟 ↔ (𝑠 ≤ 𝑟 ∧ 𝑠◡
≤
𝑟)) | 
| 76 | 74, 7, 75 | 3bitr4i 303 | . . . . . 6
⊢ (𝑟( ≤ ∩ ◡ ≤ )𝑠 ↔ 𝑠( ≤ ∩ ◡ ≤ )𝑟) | 
| 77 | 76 | biimpi 216 | . . . . 5
⊢ (𝑟( ≤ ∩ ◡ ≤ )𝑠 → 𝑠( ≤ ∩ ◡ ≤ )𝑟) | 
| 78 | 71, 77 | jctil 519 | . . . 4
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ((𝑟( ≤ ∩ ◡ ≤ )𝑠 → 𝑠( ≤ ∩ ◡ ≤ )𝑟) ∧ ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) → 𝑟( ≤ ∩ ◡ ≤ )𝑡))) | 
| 79 | 78 | alrimiv 1927 | . . 3
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ∀𝑡((𝑟( ≤ ∩ ◡ ≤ )𝑠 → 𝑠( ≤ ∩ ◡ ≤ )𝑟) ∧ ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) → 𝑟( ≤ ∩ ◡ ≤ )𝑡))) | 
| 80 | 79 | alrimivv 1928 | . 2
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ∀𝑟∀𝑠∀𝑡((𝑟( ≤ ∩ ◡ ≤ )𝑠 → 𝑠( ≤ ∩ ◡ ≤ )𝑟) ∧ ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) → 𝑟( ≤ ∩ ◡ ≤ )𝑡))) | 
| 81 |  | dfer2 8746 | . 2
⊢ (( ≤ ∩
◡ ≤ ) Er dom ( ≤ ∩
◡ ≤ ) ↔ (Rel ( ≤ ∩
◡ ≤ ) ∧ dom ( ≤ ∩
◡ ≤ ) = dom ( ≤ ∩
◡ ≤ ) ∧ ∀𝑟∀𝑠∀𝑡((𝑟( ≤ ∩ ◡ ≤ )𝑠 → 𝑠( ≤ ∩ ◡ ≤ )𝑟) ∧ ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) → 𝑟( ≤ ∩ ◡ ≤ )𝑡)))) | 
| 82 | 5, 6, 80, 81 | syl3anbrc 1344 | 1
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ( ≤ ∩ ◡ ≤ ) Er dom ( ≤ ∩
◡ ≤ )) |