Step | Hyp | Ref
| Expression |
1 | | inss2 4160 |
. . . 4
⊢ ( ≤ ∩
◡ ≤ ) ⊆ ◡ ≤ |
2 | | relcnv 6001 |
. . . 4
⊢ Rel ◡ ≤ |
3 | | relss 5682 |
. . . 4
⊢ (( ≤ ∩
◡ ≤ ) ⊆ ◡ ≤ → (Rel ◡ ≤ → Rel ( ≤ ∩
◡ ≤ ))) |
4 | 1, 2, 3 | mp2 9 |
. . 3
⊢ Rel (
≤
∩ ◡ ≤ ) |
5 | 4 | a1i 11 |
. 2
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → Rel ( ≤ ∩ ◡ ≤ )) |
6 | | eqidd 2739 |
. 2
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → dom ( ≤ ∩ ◡ ≤ ) = dom ( ≤ ∩
◡ ≤ )) |
7 | | brin 5122 |
. . . . . . . 8
⊢ (𝑟( ≤ ∩ ◡ ≤ )𝑠 ↔ (𝑟 ≤ 𝑠 ∧ 𝑟◡
≤
𝑠)) |
8 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑟 ∈ V |
9 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑠 ∈ V |
10 | 8, 9 | brcnv 5780 |
. . . . . . . . 9
⊢ (𝑟◡ ≤ 𝑠 ↔ 𝑠 ≤ 𝑟) |
11 | 10 | anbi2i 622 |
. . . . . . . 8
⊢ ((𝑟 ≤ 𝑠 ∧ 𝑟◡
≤
𝑠) ↔ (𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟)) |
12 | 7, 11 | bitri 274 |
. . . . . . 7
⊢ (𝑟( ≤ ∩ ◡ ≤ )𝑠 ↔ (𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟)) |
13 | | brin 5122 |
. . . . . . . 8
⊢ (𝑠( ≤ ∩ ◡ ≤ )𝑡 ↔ (𝑠 ≤ 𝑡 ∧ 𝑠◡
≤
𝑡)) |
14 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑡 ∈ V |
15 | 9, 14 | brcnv 5780 |
. . . . . . . . 9
⊢ (𝑠◡ ≤ 𝑡 ↔ 𝑡 ≤ 𝑠) |
16 | 15 | anbi2i 622 |
. . . . . . . 8
⊢ ((𝑠 ≤ 𝑡 ∧ 𝑠◡
≤
𝑡) ↔ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) |
17 | 13, 16 | bitri 274 |
. . . . . . 7
⊢ (𝑠( ≤ ∩ ◡ ≤ )𝑡 ↔ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) |
18 | 12, 17 | anbi12i 626 |
. . . . . 6
⊢ ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) ↔ ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠))) |
19 | | breq1 5073 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑟 → (𝑎 ≤ 𝑏 ↔ 𝑟 ≤ 𝑏)) |
20 | 19 | anbi1d 629 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑟 → ((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) ↔ (𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐))) |
21 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑟 → (𝑎 ≤ 𝑐 ↔ 𝑟 ≤ 𝑐)) |
22 | 20, 21 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑟 → (((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) ↔ ((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐))) |
23 | 22 | 2albidv 1927 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑟 → (∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) ↔ ∀𝑏∀𝑐((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐))) |
24 | 23 | spvv 2001 |
. . . . . . . . 9
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ∀𝑏∀𝑐((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐)) |
25 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑠 → (𝑟 ≤ 𝑏 ↔ 𝑟 ≤ 𝑠)) |
26 | | breq1 5073 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑠 → (𝑏 ≤ 𝑐 ↔ 𝑠 ≤ 𝑐)) |
27 | 25, 26 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑠 → ((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) ↔ (𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐))) |
28 | 27 | imbi1d 341 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑠 → (((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐) ↔ ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑟 ≤ 𝑐))) |
29 | 28 | albidv 1924 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑠 → (∀𝑐((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐) ↔ ∀𝑐((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑟 ≤ 𝑐))) |
30 | 29 | spvv 2001 |
. . . . . . . . 9
⊢
(∀𝑏∀𝑐((𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑟 ≤ 𝑐) → ∀𝑐((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑟 ≤ 𝑐)) |
31 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑡 → (𝑠 ≤ 𝑐 ↔ 𝑠 ≤ 𝑡)) |
32 | 31 | anbi2d 628 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑡 → ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) ↔ (𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡))) |
33 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑡 → (𝑟 ≤ 𝑐 ↔ 𝑟 ≤ 𝑡)) |
34 | 32, 33 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑡 → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑟 ≤ 𝑐) ↔ ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡))) |
35 | 34 | spvv 2001 |
. . . . . . . . 9
⊢
(∀𝑐((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑟 ≤ 𝑐) → ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡)) |
36 | | pm3.3 448 |
. . . . . . . . . . . . . 14
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → (𝑟 ≤ 𝑠 → (𝑠 ≤ 𝑡 → 𝑟 ≤ 𝑡))) |
37 | 36 | com23 86 |
. . . . . . . . . . . . 13
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → (𝑠 ≤ 𝑡 → (𝑟 ≤ 𝑠 → 𝑟 ≤ 𝑡))) |
38 | 37 | adantrd 491 |
. . . . . . . . . . . 12
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → (𝑟 ≤ 𝑠 → 𝑟 ≤ 𝑡))) |
39 | 38 | com23 86 |
. . . . . . . . . . 11
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → (𝑟 ≤ 𝑠 → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → 𝑟 ≤ 𝑡))) |
40 | 39 | adantrd 491 |
. . . . . . . . . 10
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → 𝑟 ≤ 𝑡))) |
41 | 40 | impd 410 |
. . . . . . . . 9
⊢ (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡) → 𝑟 ≤ 𝑡) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → 𝑟 ≤ 𝑡)) |
42 | 24, 30, 35, 41 | 4syl 19 |
. . . . . . . 8
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → 𝑟 ≤ 𝑡)) |
43 | | breq1 5073 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑡 → (𝑎 ≤ 𝑏 ↔ 𝑡 ≤ 𝑏)) |
44 | 43 | anbi1d 629 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑡 → ((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) ↔ (𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐))) |
45 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑡 → (𝑎 ≤ 𝑐 ↔ 𝑡 ≤ 𝑐)) |
46 | 44, 45 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑡 → (((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) ↔ ((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐))) |
47 | 46 | 2albidv 1927 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑡 → (∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) ↔ ∀𝑏∀𝑐((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐))) |
48 | 47 | spvv 2001 |
. . . . . . . . 9
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ∀𝑏∀𝑐((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐)) |
49 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑠 → (𝑡 ≤ 𝑏 ↔ 𝑡 ≤ 𝑠)) |
50 | 49, 26 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑠 → ((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) ↔ (𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐))) |
51 | 50 | imbi1d 341 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑠 → (((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐) ↔ ((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑡 ≤ 𝑐))) |
52 | 51 | albidv 1924 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑠 → (∀𝑐((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐) ↔ ∀𝑐((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑡 ≤ 𝑐))) |
53 | 52 | spvv 2001 |
. . . . . . . . 9
⊢
(∀𝑏∀𝑐((𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑡 ≤ 𝑐) → ∀𝑐((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑡 ≤ 𝑐)) |
54 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑟 → (𝑠 ≤ 𝑐 ↔ 𝑠 ≤ 𝑟)) |
55 | 54 | anbi2d 628 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑟 → ((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) ↔ (𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟))) |
56 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑟 → (𝑡 ≤ 𝑐 ↔ 𝑡 ≤ 𝑟)) |
57 | 55, 56 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑟 → (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑡 ≤ 𝑐) ↔ ((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟))) |
58 | 57 | spvv 2001 |
. . . . . . . . 9
⊢
(∀𝑐((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐) → 𝑡 ≤ 𝑐) → ((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟)) |
59 | | pm3.3 448 |
. . . . . . . . . . . . 13
⊢ (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟) → (𝑡 ≤ 𝑠 → (𝑠 ≤ 𝑟 → 𝑡 ≤ 𝑟))) |
60 | 59 | adantld 490 |
. . . . . . . . . . . 12
⊢ (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟) → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → (𝑠 ≤ 𝑟 → 𝑡 ≤ 𝑟))) |
61 | 60 | com23 86 |
. . . . . . . . . . 11
⊢ (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟) → (𝑠 ≤ 𝑟 → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → 𝑡 ≤ 𝑟))) |
62 | 61 | adantld 490 |
. . . . . . . . . 10
⊢ (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟) → ((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → ((𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠) → 𝑡 ≤ 𝑟))) |
63 | 62 | impd 410 |
. . . . . . . . 9
⊢ (((𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) → 𝑡 ≤ 𝑟) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → 𝑡 ≤ 𝑟)) |
64 | 48, 53, 58, 63 | 4syl 19 |
. . . . . . . 8
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → 𝑡 ≤ 𝑟)) |
65 | 42, 64 | jcad 512 |
. . . . . . 7
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → (𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟))) |
66 | | brin 5122 |
. . . . . . . 8
⊢ (𝑟( ≤ ∩ ◡ ≤ )𝑡 ↔ (𝑟 ≤ 𝑡 ∧ 𝑟◡
≤
𝑡)) |
67 | 8, 14 | brcnv 5780 |
. . . . . . . . 9
⊢ (𝑟◡ ≤ 𝑡 ↔ 𝑡 ≤ 𝑟) |
68 | 67 | anbi2i 622 |
. . . . . . . 8
⊢ ((𝑟 ≤ 𝑡 ∧ 𝑟◡
≤
𝑡) ↔ (𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟)) |
69 | 66, 68 | bitr2i 275 |
. . . . . . 7
⊢ ((𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟) ↔ 𝑟( ≤ ∩ ◡ ≤ )𝑡) |
70 | 65, 69 | syl6ib 250 |
. . . . . 6
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → (((𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟) ∧ (𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠)) → 𝑟( ≤ ∩ ◡ ≤ )𝑡)) |
71 | 18, 70 | syl5bi 241 |
. . . . 5
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) → 𝑟( ≤ ∩ ◡ ≤ )𝑡)) |
72 | 9, 8 | brcnv 5780 |
. . . . . . . . 9
⊢ (𝑠◡ ≤ 𝑟 ↔ 𝑟 ≤ 𝑠) |
73 | 72 | bicomi 223 |
. . . . . . . 8
⊢ (𝑟 ≤ 𝑠 ↔ 𝑠◡
≤
𝑟) |
74 | 73, 10 | anbi12ci 627 |
. . . . . . 7
⊢ ((𝑟 ≤ 𝑠 ∧ 𝑟◡
≤
𝑠) ↔ (𝑠 ≤ 𝑟 ∧ 𝑠◡
≤
𝑟)) |
75 | | brin 5122 |
. . . . . . 7
⊢ (𝑠( ≤ ∩ ◡ ≤ )𝑟 ↔ (𝑠 ≤ 𝑟 ∧ 𝑠◡
≤
𝑟)) |
76 | 74, 7, 75 | 3bitr4i 302 |
. . . . . 6
⊢ (𝑟( ≤ ∩ ◡ ≤ )𝑠 ↔ 𝑠( ≤ ∩ ◡ ≤ )𝑟) |
77 | 76 | biimpi 215 |
. . . . 5
⊢ (𝑟( ≤ ∩ ◡ ≤ )𝑠 → 𝑠( ≤ ∩ ◡ ≤ )𝑟) |
78 | 71, 77 | jctil 519 |
. . . 4
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ((𝑟( ≤ ∩ ◡ ≤ )𝑠 → 𝑠( ≤ ∩ ◡ ≤ )𝑟) ∧ ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) → 𝑟( ≤ ∩ ◡ ≤ )𝑡))) |
79 | 78 | alrimiv 1931 |
. . 3
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ∀𝑡((𝑟( ≤ ∩ ◡ ≤ )𝑠 → 𝑠( ≤ ∩ ◡ ≤ )𝑟) ∧ ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) → 𝑟( ≤ ∩ ◡ ≤ )𝑡))) |
80 | 79 | alrimivv 1932 |
. 2
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ∀𝑟∀𝑠∀𝑡((𝑟( ≤ ∩ ◡ ≤ )𝑠 → 𝑠( ≤ ∩ ◡ ≤ )𝑟) ∧ ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) → 𝑟( ≤ ∩ ◡ ≤ )𝑡))) |
81 | | dfer2 8457 |
. 2
⊢ (( ≤ ∩
◡ ≤ ) Er dom ( ≤ ∩
◡ ≤ ) ↔ (Rel ( ≤ ∩
◡ ≤ ) ∧ dom ( ≤ ∩
◡ ≤ ) = dom ( ≤ ∩
◡ ≤ ) ∧ ∀𝑟∀𝑠∀𝑡((𝑟( ≤ ∩ ◡ ≤ )𝑠 → 𝑠( ≤ ∩ ◡ ≤ )𝑟) ∧ ((𝑟( ≤ ∩ ◡ ≤ )𝑠 ∧ 𝑠( ≤ ∩ ◡ ≤ )𝑡) → 𝑟( ≤ ∩ ◡ ≤ )𝑡)))) |
82 | 5, 6, 80, 81 | syl3anbrc 1341 |
1
⊢
(∀𝑎∀𝑏∀𝑐((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) → 𝑎 ≤ 𝑐) → ( ≤ ∩ ◡ ≤ ) Er dom ( ≤ ∩
◡ ≤ )) |