MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclo Structured version   Visualization version   GIF version

Theorem isclo 21802
Description: A set 𝐴 is clopen iff for every point 𝑥 in the space there is a neighborhood 𝑦 such that all the points in 𝑦 are in 𝐴 iff 𝑥 is. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
isclo.1 𝑋 = 𝐽
Assertion
Ref Expression
isclo ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isclo
StepHypRef Expression
1 elin 3877 . 2 (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ (𝐴𝐽𝐴 ∈ (Clsd‘𝐽)))
2 isclo.1 . . . . 5 𝑋 = 𝐽
32iscld2 21743 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝑋𝐴) ∈ 𝐽))
43anbi2d 631 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽𝐴 ∈ (Clsd‘𝐽)) ↔ (𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽)))
5 eltop2 21690 . . . . . 6 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
6 dfss3 3883 . . . . . . . . . 10 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
7 pm5.501 370 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
87ralbidv 3127 . . . . . . . . . 10 (𝑥𝐴 → (∀𝑧𝑦 𝑧𝐴 ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
96, 8syl5bb 286 . . . . . . . . 9 (𝑥𝐴 → (𝑦𝐴 ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
109anbi2d 631 . . . . . . . 8 (𝑥𝐴 → ((𝑥𝑦𝑦𝐴) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
1110rexbidv 3222 . . . . . . 7 (𝑥𝐴 → (∃𝑦𝐽 (𝑥𝑦𝑦𝐴) ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
1211ralbiia 3097 . . . . . 6 (∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴) ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
135, 12bitrdi 290 . . . . 5 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
14 eltop2 21690 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴))))
15 dfss3 3883 . . . . . . . . . 10 (𝑦 ⊆ (𝑋𝐴) ↔ ∀𝑧𝑦 𝑧 ∈ (𝑋𝐴))
16 id 22 . . . . . . . . . . . . . . 15 (𝑧𝑦𝑧𝑦)
17 simpr 488 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → 𝑦𝐽)
18 elunii 4807 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝐽) → 𝑧 𝐽)
1916, 17, 18syl2anr 599 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → 𝑧 𝐽)
2019, 2eleqtrrdi 2864 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → 𝑧𝑋)
21 eldif 3871 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋𝐴) ↔ (𝑧𝑋 ∧ ¬ 𝑧𝐴))
2221baib 539 . . . . . . . . . . . . 13 (𝑧𝑋 → (𝑧 ∈ (𝑋𝐴) ↔ ¬ 𝑧𝐴))
2320, 22syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (𝑧 ∈ (𝑋𝐴) ↔ ¬ 𝑧𝐴))
24 eldifn 4036 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋𝐴) → ¬ 𝑥𝐴)
25 nbn2 374 . . . . . . . . . . . . . 14 𝑥𝐴 → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2624, 25syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝐴) → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2726ad2antrr 725 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2823, 27bitrd 282 . . . . . . . . . . 11 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (𝑧 ∈ (𝑋𝐴) ↔ (𝑥𝐴𝑧𝐴)))
2928ralbidva 3126 . . . . . . . . . 10 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → (∀𝑧𝑦 𝑧 ∈ (𝑋𝐴) ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3015, 29syl5bb 286 . . . . . . . . 9 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → (𝑦 ⊆ (𝑋𝐴) ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3130anbi2d 631 . . . . . . . 8 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → ((𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3231rexbidva 3221 . . . . . . 7 (𝑥 ∈ (𝑋𝐴) → (∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3332ralbiia 3097 . . . . . 6 (∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3414, 33bitrdi 290 . . . . 5 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3513, 34anbi12d 633 . . . 4 (𝐽 ∈ Top → ((𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))))
3635adantr 484 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))))
37 ralunb 4099 . . . 4 (∀𝑥 ∈ (𝐴 ∪ (𝑋𝐴))∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
38 simpr 488 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
39 undif 4382 . . . . . 6 (𝐴𝑋 ↔ (𝐴 ∪ (𝑋𝐴)) = 𝑋)
4038, 39sylib 221 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∪ (𝑋𝐴)) = 𝑋)
4140raleqdv 3330 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∀𝑥 ∈ (𝐴 ∪ (𝑋𝐴))∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
4237, 41bitr3id 288 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
434, 36, 423bitrd 308 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽𝐴 ∈ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
441, 43syl5bb 286 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1539  wcel 2112  wral 3071  wrex 3072  cdif 3858  cun 3859  cin 3860  wss 3861   cuni 4802  cfv 6341  Topctop 21608  Clsdccld 21731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3700  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-opab 5100  df-mpt 5118  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-iota 6300  df-fun 6343  df-fv 6349  df-topgen 16790  df-top 21609  df-cld 21734
This theorem is referenced by:  isclo2  21803  cvmliftmolem2  32774  cvmlift2lem12  32806
  Copyright terms: Public domain W3C validator