MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclo Structured version   Visualization version   GIF version

Theorem isclo 21697
Description: A set 𝐴 is clopen iff for every point 𝑥 in the space there is a neighborhood 𝑦 such that all the points in 𝑦 are in 𝐴 iff 𝑥 is. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
isclo.1 𝑋 = 𝐽
Assertion
Ref Expression
isclo ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isclo
StepHypRef Expression
1 elin 4171 . 2 (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ (𝐴𝐽𝐴 ∈ (Clsd‘𝐽)))
2 isclo.1 . . . . 5 𝑋 = 𝐽
32iscld2 21638 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝑋𝐴) ∈ 𝐽))
43anbi2d 630 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽𝐴 ∈ (Clsd‘𝐽)) ↔ (𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽)))
5 eltop2 21585 . . . . . 6 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
6 dfss3 3958 . . . . . . . . . 10 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
7 pm5.501 369 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
87ralbidv 3199 . . . . . . . . . 10 (𝑥𝐴 → (∀𝑧𝑦 𝑧𝐴 ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
96, 8syl5bb 285 . . . . . . . . 9 (𝑥𝐴 → (𝑦𝐴 ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
109anbi2d 630 . . . . . . . 8 (𝑥𝐴 → ((𝑥𝑦𝑦𝐴) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
1110rexbidv 3299 . . . . . . 7 (𝑥𝐴 → (∃𝑦𝐽 (𝑥𝑦𝑦𝐴) ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
1211ralbiia 3166 . . . . . 6 (∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴) ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
135, 12syl6bb 289 . . . . 5 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
14 eltop2 21585 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴))))
15 dfss3 3958 . . . . . . . . . 10 (𝑦 ⊆ (𝑋𝐴) ↔ ∀𝑧𝑦 𝑧 ∈ (𝑋𝐴))
16 id 22 . . . . . . . . . . . . . . 15 (𝑧𝑦𝑧𝑦)
17 simpr 487 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → 𝑦𝐽)
18 elunii 4845 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝐽) → 𝑧 𝐽)
1916, 17, 18syl2anr 598 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → 𝑧 𝐽)
2019, 2eleqtrrdi 2926 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → 𝑧𝑋)
21 eldif 3948 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋𝐴) ↔ (𝑧𝑋 ∧ ¬ 𝑧𝐴))
2221baib 538 . . . . . . . . . . . . 13 (𝑧𝑋 → (𝑧 ∈ (𝑋𝐴) ↔ ¬ 𝑧𝐴))
2320, 22syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (𝑧 ∈ (𝑋𝐴) ↔ ¬ 𝑧𝐴))
24 eldifn 4106 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋𝐴) → ¬ 𝑥𝐴)
25 nbn2 373 . . . . . . . . . . . . . 14 𝑥𝐴 → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2624, 25syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝐴) → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2726ad2antrr 724 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2823, 27bitrd 281 . . . . . . . . . . 11 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (𝑧 ∈ (𝑋𝐴) ↔ (𝑥𝐴𝑧𝐴)))
2928ralbidva 3198 . . . . . . . . . 10 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → (∀𝑧𝑦 𝑧 ∈ (𝑋𝐴) ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3015, 29syl5bb 285 . . . . . . . . 9 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → (𝑦 ⊆ (𝑋𝐴) ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3130anbi2d 630 . . . . . . . 8 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → ((𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3231rexbidva 3298 . . . . . . 7 (𝑥 ∈ (𝑋𝐴) → (∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3332ralbiia 3166 . . . . . 6 (∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3414, 33syl6bb 289 . . . . 5 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3513, 34anbi12d 632 . . . 4 (𝐽 ∈ Top → ((𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))))
3635adantr 483 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))))
37 ralunb 4169 . . . 4 (∀𝑥 ∈ (𝐴 ∪ (𝑋𝐴))∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
38 simpr 487 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
39 undif 4432 . . . . . 6 (𝐴𝑋 ↔ (𝐴 ∪ (𝑋𝐴)) = 𝑋)
4038, 39sylib 220 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∪ (𝑋𝐴)) = 𝑋)
4140raleqdv 3417 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∀𝑥 ∈ (𝐴 ∪ (𝑋𝐴))∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
4237, 41syl5bbr 287 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
434, 36, 423bitrd 307 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽𝐴 ∈ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
441, 43syl5bb 285 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  cdif 3935  cun 3936  cin 3937  wss 3938   cuni 4840  cfv 6357  Topctop 21503  Clsdccld 21626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-topgen 16719  df-top 21504  df-cld 21629
This theorem is referenced by:  isclo2  21698  cvmliftmolem2  32531  cvmlift2lem12  32563
  Copyright terms: Public domain W3C validator