Proof of Theorem isclo
| Step | Hyp | Ref
| Expression |
| 1 | | elin 3967 |
. 2
⊢ (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ (𝐴 ∈ 𝐽 ∧ 𝐴 ∈ (Clsd‘𝐽))) |
| 2 | | isclo.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
| 3 | 2 | iscld2 23036 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝐴) ∈ 𝐽)) |
| 4 | 3 | anbi2d 630 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐴 ∈ 𝐽 ∧ 𝐴 ∈ (Clsd‘𝐽)) ↔ (𝐴 ∈ 𝐽 ∧ (𝑋 ∖ 𝐴) ∈ 𝐽))) |
| 5 | | eltop2 22982 |
. . . . . 6
⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| 6 | | dfss3 3972 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝐴 ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ 𝐴) |
| 7 | | pm5.501 366 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑧 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 8 | 7 | ralbidv 3178 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (∀𝑧 ∈ 𝑦 𝑧 ∈ 𝐴 ↔ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 9 | 6, 8 | bitrid 283 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (𝑦 ⊆ 𝐴 ↔ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 10 | 9 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
| 11 | 10 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) ↔ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
| 12 | 11 | ralbiia 3091 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 13 | 5, 12 | bitrdi 287 |
. . . . 5
⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
| 14 | | eltop2 22982 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑋 ∖ 𝐴)))) |
| 15 | | dfss3 3972 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ (𝑋 ∖ 𝐴) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ (𝑋 ∖ 𝐴)) |
| 16 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑦) |
| 17 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) → 𝑦 ∈ 𝐽) |
| 18 | | elunii 4912 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐽) → 𝑧 ∈ ∪ 𝐽) |
| 19 | 16, 17, 18 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ ∪ 𝐽) |
| 20 | 19, 2 | eleqtrrdi 2852 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑋) |
| 21 | | eldif 3961 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝑋 ∖ 𝐴) ↔ (𝑧 ∈ 𝑋 ∧ ¬ 𝑧 ∈ 𝐴)) |
| 22 | 21 | baib 535 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑋 → (𝑧 ∈ (𝑋 ∖ 𝐴) ↔ ¬ 𝑧 ∈ 𝐴)) |
| 23 | 20, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) ∧ 𝑧 ∈ 𝑦) → (𝑧 ∈ (𝑋 ∖ 𝐴) ↔ ¬ 𝑧 ∈ 𝐴)) |
| 24 | | eldifn 4132 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝑋 ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) |
| 25 | | nbn2 370 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑥 ∈ 𝐴 → (¬ 𝑧 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑋 ∖ 𝐴) → (¬ 𝑧 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 27 | 26 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) ∧ 𝑧 ∈ 𝑦) → (¬ 𝑧 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 28 | 23, 27 | bitrd 279 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) ∧ 𝑧 ∈ 𝑦) → (𝑧 ∈ (𝑋 ∖ 𝐴) ↔ (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 29 | 28 | ralbidva 3176 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) → (∀𝑧 ∈ 𝑦 𝑧 ∈ (𝑋 ∖ 𝐴) ↔ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 30 | 15, 29 | bitrid 283 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) → (𝑦 ⊆ (𝑋 ∖ 𝐴) ↔ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 31 | 30 | anbi2d 630 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑋 ∖ 𝐴)) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
| 32 | 31 | rexbidva 3177 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑋 ∖ 𝐴) → (∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑋 ∖ 𝐴)) ↔ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
| 33 | 32 | ralbiia 3091 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑋 ∖ 𝐴)) ↔ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
| 34 | 14, 33 | bitrdi 287 |
. . . . 5
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
| 35 | 13, 34 | anbi12d 632 |
. . . 4
⊢ (𝐽 ∈ Top → ((𝐴 ∈ 𝐽 ∧ (𝑋 ∖ 𝐴) ∈ 𝐽) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))))) |
| 36 | 35 | adantr 480 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐴 ∈ 𝐽 ∧ (𝑋 ∖ 𝐴) ∈ 𝐽) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))))) |
| 37 | | ralunb 4197 |
. . . 4
⊢
(∀𝑥 ∈
(𝐴 ∪ (𝑋 ∖ 𝐴))∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
| 38 | | simpr 484 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) |
| 39 | | undif 4482 |
. . . . . 6
⊢ (𝐴 ⊆ 𝑋 ↔ (𝐴 ∪ (𝑋 ∖ 𝐴)) = 𝑋) |
| 40 | 38, 39 | sylib 218 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∪ (𝑋 ∖ 𝐴)) = 𝑋) |
| 41 | 40 | raleqdv 3326 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (∀𝑥 ∈ (𝐴 ∪ (𝑋 ∖ 𝐴))∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
| 42 | 37, 41 | bitr3id 285 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
| 43 | 4, 36, 42 | 3bitrd 305 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐴 ∈ 𝐽 ∧ 𝐴 ∈ (Clsd‘𝐽)) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
| 44 | 1, 43 | bitrid 283 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |