MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclo Structured version   Visualization version   GIF version

Theorem isclo 22238
Description: A set 𝐴 is clopen iff for every point 𝑥 in the space there is a neighborhood 𝑦 such that all the points in 𝑦 are in 𝐴 iff 𝑥 is. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
isclo.1 𝑋 = 𝐽
Assertion
Ref Expression
isclo ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isclo
StepHypRef Expression
1 elin 3903 . 2 (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ (𝐴𝐽𝐴 ∈ (Clsd‘𝐽)))
2 isclo.1 . . . . 5 𝑋 = 𝐽
32iscld2 22179 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝑋𝐴) ∈ 𝐽))
43anbi2d 629 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽𝐴 ∈ (Clsd‘𝐽)) ↔ (𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽)))
5 eltop2 22125 . . . . . 6 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
6 dfss3 3909 . . . . . . . . . 10 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
7 pm5.501 367 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
87ralbidv 3112 . . . . . . . . . 10 (𝑥𝐴 → (∀𝑧𝑦 𝑧𝐴 ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
96, 8bitrid 282 . . . . . . . . 9 (𝑥𝐴 → (𝑦𝐴 ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
109anbi2d 629 . . . . . . . 8 (𝑥𝐴 → ((𝑥𝑦𝑦𝐴) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
1110rexbidv 3226 . . . . . . 7 (𝑥𝐴 → (∃𝑦𝐽 (𝑥𝑦𝑦𝐴) ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
1211ralbiia 3091 . . . . . 6 (∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴) ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
135, 12bitrdi 287 . . . . 5 (𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
14 eltop2 22125 . . . . . 6 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴))))
15 dfss3 3909 . . . . . . . . . 10 (𝑦 ⊆ (𝑋𝐴) ↔ ∀𝑧𝑦 𝑧 ∈ (𝑋𝐴))
16 id 22 . . . . . . . . . . . . . . 15 (𝑧𝑦𝑧𝑦)
17 simpr 485 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → 𝑦𝐽)
18 elunii 4844 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝐽) → 𝑧 𝐽)
1916, 17, 18syl2anr 597 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → 𝑧 𝐽)
2019, 2eleqtrrdi 2850 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → 𝑧𝑋)
21 eldif 3897 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋𝐴) ↔ (𝑧𝑋 ∧ ¬ 𝑧𝐴))
2221baib 536 . . . . . . . . . . . . 13 (𝑧𝑋 → (𝑧 ∈ (𝑋𝐴) ↔ ¬ 𝑧𝐴))
2320, 22syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (𝑧 ∈ (𝑋𝐴) ↔ ¬ 𝑧𝐴))
24 eldifn 4062 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋𝐴) → ¬ 𝑥𝐴)
25 nbn2 371 . . . . . . . . . . . . . 14 𝑥𝐴 → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2624, 25syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝐴) → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2726ad2antrr 723 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (¬ 𝑧𝐴 ↔ (𝑥𝐴𝑧𝐴)))
2823, 27bitrd 278 . . . . . . . . . . 11 (((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) ∧ 𝑧𝑦) → (𝑧 ∈ (𝑋𝐴) ↔ (𝑥𝐴𝑧𝐴)))
2928ralbidva 3111 . . . . . . . . . 10 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → (∀𝑧𝑦 𝑧 ∈ (𝑋𝐴) ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3015, 29bitrid 282 . . . . . . . . 9 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → (𝑦 ⊆ (𝑋𝐴) ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3130anbi2d 629 . . . . . . . 8 ((𝑥 ∈ (𝑋𝐴) ∧ 𝑦𝐽) → ((𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3231rexbidva 3225 . . . . . . 7 (𝑥 ∈ (𝑋𝐴) → (∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3332ralbiia 3091 . . . . . 6 (∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦𝑦 ⊆ (𝑋𝐴)) ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3414, 33bitrdi 287 . . . . 5 (𝐽 ∈ Top → ((𝑋𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3513, 34anbi12d 631 . . . 4 (𝐽 ∈ Top → ((𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))))
3635adantr 481 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽 ∧ (𝑋𝐴) ∈ 𝐽) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))))
37 ralunb 4125 . . . 4 (∀𝑥 ∈ (𝐴 ∪ (𝑋𝐴))∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ (∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
38 simpr 485 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
39 undif 4415 . . . . . 6 (𝐴𝑋 ↔ (𝐴 ∪ (𝑋𝐴)) = 𝑋)
4038, 39sylib 217 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∪ (𝑋𝐴)) = 𝑋)
4140raleqdv 3348 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∀𝑥 ∈ (𝐴 ∪ (𝑋𝐴))∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
4237, 41bitr3id 285 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((∀𝑥𝐴𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ∧ ∀𝑥 ∈ (𝑋𝐴)∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
434, 36, 423bitrd 305 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐴𝐽𝐴 ∈ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
441, 43bitrid 282 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cdif 3884  cun 3885  cin 3886  wss 3887   cuni 4839  cfv 6433  Topctop 22042  Clsdccld 22167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-topgen 17154  df-top 22043  df-cld 22170
This theorem is referenced by:  isclo2  22239  cvmliftmolem2  33244  cvmlift2lem12  33276
  Copyright terms: Public domain W3C validator