Proof of Theorem isclo
Step | Hyp | Ref
| Expression |
1 | | elin 3899 |
. 2
⊢ (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ (𝐴 ∈ 𝐽 ∧ 𝐴 ∈ (Clsd‘𝐽))) |
2 | | isclo.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
3 | 2 | iscld2 22087 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝐴) ∈ 𝐽)) |
4 | 3 | anbi2d 628 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐴 ∈ 𝐽 ∧ 𝐴 ∈ (Clsd‘𝐽)) ↔ (𝐴 ∈ 𝐽 ∧ (𝑋 ∖ 𝐴) ∈ 𝐽))) |
5 | | eltop2 22033 |
. . . . . 6
⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
6 | | dfss3 3905 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝐴 ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ 𝐴) |
7 | | pm5.501 366 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑧 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
8 | 7 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (∀𝑧 ∈ 𝑦 𝑧 ∈ 𝐴 ↔ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
9 | 6, 8 | syl5bb 282 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (𝑦 ⊆ 𝐴 ↔ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
10 | 9 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
11 | 10 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) ↔ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
12 | 11 | ralbiia 3089 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
13 | 5, 12 | bitrdi 286 |
. . . . 5
⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
14 | | eltop2 22033 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑋 ∖ 𝐴)))) |
15 | | dfss3 3905 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ (𝑋 ∖ 𝐴) ↔ ∀𝑧 ∈ 𝑦 𝑧 ∈ (𝑋 ∖ 𝐴)) |
16 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑦) |
17 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) → 𝑦 ∈ 𝐽) |
18 | | elunii 4841 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐽) → 𝑧 ∈ ∪ 𝐽) |
19 | 16, 17, 18 | syl2anr 596 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ ∪ 𝐽) |
20 | 19, 2 | eleqtrrdi 2850 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑋) |
21 | | eldif 3893 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝑋 ∖ 𝐴) ↔ (𝑧 ∈ 𝑋 ∧ ¬ 𝑧 ∈ 𝐴)) |
22 | 21 | baib 535 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑋 → (𝑧 ∈ (𝑋 ∖ 𝐴) ↔ ¬ 𝑧 ∈ 𝐴)) |
23 | 20, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) ∧ 𝑧 ∈ 𝑦) → (𝑧 ∈ (𝑋 ∖ 𝐴) ↔ ¬ 𝑧 ∈ 𝐴)) |
24 | | eldifn 4058 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝑋 ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) |
25 | | nbn2 370 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑥 ∈ 𝐴 → (¬ 𝑧 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑋 ∖ 𝐴) → (¬ 𝑧 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
27 | 26 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) ∧ 𝑧 ∈ 𝑦) → (¬ 𝑧 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
28 | 23, 27 | bitrd 278 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) ∧ 𝑧 ∈ 𝑦) → (𝑧 ∈ (𝑋 ∖ 𝐴) ↔ (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
29 | 28 | ralbidva 3119 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) → (∀𝑧 ∈ 𝑦 𝑧 ∈ (𝑋 ∖ 𝐴) ↔ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
30 | 15, 29 | syl5bb 282 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) → (𝑦 ⊆ (𝑋 ∖ 𝐴) ↔ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
31 | 30 | anbi2d 628 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝑋 ∖ 𝐴) ∧ 𝑦 ∈ 𝐽) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑋 ∖ 𝐴)) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
32 | 31 | rexbidva 3224 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑋 ∖ 𝐴) → (∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑋 ∖ 𝐴)) ↔ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
33 | 32 | ralbiia 3089 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ (𝑋 ∖ 𝐴)) ↔ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) |
34 | 14, 33 | bitrdi 286 |
. . . . 5
⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝐴) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
35 | 13, 34 | anbi12d 630 |
. . . 4
⊢ (𝐽 ∈ Top → ((𝐴 ∈ 𝐽 ∧ (𝑋 ∖ 𝐴) ∈ 𝐽) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))))) |
36 | 35 | adantr 480 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐴 ∈ 𝐽 ∧ (𝑋 ∖ 𝐴) ∈ 𝐽) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))))) |
37 | | ralunb 4121 |
. . . 4
⊢
(∀𝑥 ∈
(𝐴 ∪ (𝑋 ∖ 𝐴))∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
38 | | simpr 484 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) |
39 | | undif 4412 |
. . . . . 6
⊢ (𝐴 ⊆ 𝑋 ↔ (𝐴 ∪ (𝑋 ∖ 𝐴)) = 𝑋) |
40 | 38, 39 | sylib 217 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∪ (𝑋 ∖ 𝐴)) = 𝑋) |
41 | 40 | raleqdv 3339 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (∀𝑥 ∈ (𝐴 ∪ (𝑋 ∖ 𝐴))∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
42 | 37, 41 | bitr3id 284 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴))) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
43 | 4, 36, 42 | 3bitrd 304 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐴 ∈ 𝐽 ∧ 𝐴 ∈ (Clsd‘𝐽)) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |
44 | 1, 43 | syl5bb 282 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)))) |